Journal of Neuro-Oncology

, Volume 90, Issue 2, pp 171–180 | Cite as

Establishment of atypical-teratoid/rhabdoid tumor (AT/RT) cell cultures from disseminated CSF cells: a model to elucidate biology and potential targeted therapeutics

  • Aru NarendranEmail author
  • Lucas Coppes
  • Aarthi Jayanthan
  • Michael Coppes
  • Bijan Teja
  • Delphine Bernoux
  • David George
  • Douglas Strother
Laboratory Investigation-Human/animal tissue


Atypical teratoid/rhabdoid tumor (AT/RT) is a highly malignant central nervous system neoplasm that usually affects infants and young children. In this report, we describe culture conditions that enabled the sustained growth of tumor cells obtained from the cerebrospinal fluid (CSF) of an infant with AT/RT. These cells retained the morphological and biomarker characteristics of the original tumor. A screening of receptor tyrosine kinases identified the presence of phosphorylated ErbB4, Insulin-R, PDGFR and IGF-IR, which appear to depend on Hsp90 to maintain their active form. IGF-IR activity is consistent with data from other established AT/RT cell lines. Inhibition of IGF-IR by the small molecular weight inhibitor AEW541 led to growth suppression of cultured AT/RT cells. In addition, neutralizing antibodies to IGF-II also inhibited the growth of these cells suggesting a potential autocrine function for this cytokine. We also compared cultured AT/RT cells to established cell lines to identify consistent drug sensitivity patterns among these cells. In addition to previously described cell lines and xenograft models, continuous culture of CSF derived cells may also provide an effective way to study the biology of AT/RT and to identify potential targets for future therapeutics for this tumor.


Atypical-teratoid/rhabdoid tumor ATRT Cell culture IGF-IR 



This work was supported in part by the Kids Cancer Care Foundation of Alberta (KCCF), for which the cell line was named. Additional research funding was provided by the Brain Tumor Research Foundation of Canada. We acknowledge the Oncology Pharmacy at the Alberta Children’s Hospital for providing many of the anti-neoplastic agents used in our experiments.


  1. 1.
    Rorke LB (1987) Classification of central nervous system tumors in children. Prog Exp Tumor Res 30:57–60PubMedGoogle Scholar
  2. 2.
    Biegel JA, Zhou JY, Rorke LB et al (1999) Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res 59:74–79PubMedGoogle Scholar
  3. 3.
    Biegel JA, Fogelgren B, Wainwright LM (2000) Germline INI1 mutation in a patient with a central nervous system atypical teratoid tumor and a renal rhabdoid tumor. Genes Chromosomes Cancer 28:31–37. doi :10.1002/(SICI)1098-2264(200005)28:1<31::AID-GCC4>3.0.CO;2-YGoogle Scholar
  4. 4.
    Klochendler-Yeivin A, Fiette L, Barra J et al (2000) The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep 1(6):500–506PubMedGoogle Scholar
  5. 5.
    Guidi CJ, Sands AT, Zambrowicz BP et al (2001) Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol Cell Biol 21(10):3598–3603. doi: 10.1128/MCB.21.10.3598-3603.2001 PubMedCrossRefGoogle Scholar
  6. 6.
    Biegel JA, Kalpana G, Knudsen E et al (2002) The role of INI1 and the SWI/SNF complex in the development of rhabdoid tumors: meeting summary from the workshop on childhood atypical teratoid/rhabdoid tumors. Cancer Res 62:323–328PubMedGoogle Scholar
  7. 7.
    Versteege I, Medjkane S, Rouillard D et al (2002) A key role of the hSNF5/INI1 tumour suppressor in the control of the G1-S transition of the cell cycle. Oncogene 21(42):6403–6412. doi: 10.1038/sj.onc.1205841 PubMedCrossRefGoogle Scholar
  8. 8.
    Foster KS, McCrary WJ, Ross JS et al (2006) Members of the hSWI/SNF chromatin remodeling complex associate with and are phosphorylated by protein kinase B/Akt. Oncogene 25(33):4605–4612. doi: 10.1038/sj.onc.1209496 PubMedCrossRefGoogle Scholar
  9. 9.
    Kohashi K, Oda Y, Yamamoto H et al (2007) Highly aggressive behavior of malignant rhabdoid tumor: a special reference to SMARCB1/INI1 gene alterations using molecular genetic analysis including quantitative real-time PCR. J Cancer Res Clin Oncol 133(11):817–824. doi: 10.1007/s00432-007-0223-z PubMedCrossRefGoogle Scholar
  10. 10.
    Albanese P, Belin MF, Delattre O (2006) The tumour suppressor hSNF5/INI1 controls the differentiation potential of malignant rhabdoid cells. Eur J Cancer 42(14):2326–2334. doi: 10.1016/j.ejca.2006.03.028 PubMedCrossRefGoogle Scholar
  11. 11.
    Morozov A, Lee SJ, Zhang ZK et al (2007) INI1 induces interferon signaling and spindle checkpoint in rhabdoid tumors. Clin Cancer Res 13(16):4721–4730. doi: 10.1158/1078-0432.CCR-07-0054 PubMedCrossRefGoogle Scholar
  12. 12.
    Neckers L (2007) Heat shock protein 90: the cancer chaperone. J Biosci 32(3):517–530. doi: 10.1007/s12038-007-0051-y PubMedCrossRefGoogle Scholar
  13. 13.
    Xu W, Neckers L (2007) Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells. Clin Cancer Res 13(6):1625–1629. doi: 10.1158/1078-0432.CCR-06-2966 PubMedCrossRefGoogle Scholar
  14. 14.
    Brown MA, Zhu L, Schmidt C, Tucker PW (2007) Hsp90—from signal transduction to cell transformation. Biochem Biophys Res Commun 363(2):241–246. doi: 10.1016/j.bbrc.2007.08.054 PubMedCrossRefGoogle Scholar
  15. 15.
    Sharp S, Workman P (2006) Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res 95:323–348. doi: 10.1016/S0065-230X(06)95009-X PubMedCrossRefGoogle Scholar
  16. 16.
    Neckers L (2006) Chaperoning oncogenes: Hsp90 as a target of geldanamycin. Handb Exp Pharmacol 172:259–277PubMedCrossRefGoogle Scholar
  17. 17.
    Powers MV, Workman P (2006) Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr Relat Cancer Suppl 1:S125–S135. doi: 10.1677/erc.1.01324 CrossRefGoogle Scholar
  18. 18.
    Narendran A, Hawkins L (2004) Studies using 17-allylamino-17-demethoxygeldanamycin (17-AAG) to understand the heterogeneity of Hsp90 linked survival and signalling pathways in neuroblastoma ANR meeting, Genoa.
  19. 19.
    D’cunja J, Shalaby T, Rivera P et al (2007) Antisense treatment of IGF-IR induces apoptosis and enhances chemosensitivity in central nervous system atypical teratoid/rhabdoid tumours cells. Eur J Cancer 43(10):1581–1589. doi: 10.1016/j.ejca.2007.03.003 PubMedCrossRefGoogle Scholar
  20. 20.
    Ogino S, Kubo S, Abdul-Karim FW, Cohen ML (2001) Comparative immunohistochemical study of insulin-like growth factor II and insulin-like growth factor receptor type 1 in pediatric brain tumors. Pediatr Dev Pathol 4(1):23–31PubMedCrossRefGoogle Scholar
  21. 21.
    Hartmann W, Koch A, Brune H et al (2005) Insulin-like growth factor II is involved in the proliferation control of medulloblastoma and its cerebellar precursor cells. Am J Pathol 166(4):1153–1162PubMedGoogle Scholar
  22. 22.
    Furchert SE, Lanvers-Kaminsky C, Juürgens H et al (2007) Inhibitors of histone deacetylases as potential therapeutic tools for high-risk embryonal tumors of the nervous system of childhood. Int J Cancer 15;120(8):1787–1794CrossRefGoogle Scholar
  23. 23.
    Maris JM, Courtright J, Houghton PJ et al (2008) Initial testing (stage 1) of sunitinib by the pediatric preclinical testing program. Pediatr Blood Cancer 2008(Feb):21 (Epub ahead of print)Google Scholar
  24. 24.
    Lee MC, Park SK, Lim JS, Jung S, Kim JH, Woo YJ et al (2002) Atypical teratoid/rhabdoid tumor of the central nervous system: clinico-pathological study. Neuropathology 22(4):252–260. doi: 10.1046/j.1440-1789.2002.00458.x PubMedCrossRefGoogle Scholar
  25. 25.
    Hawkins LM, Jayanthan AA, Narendran A (2005) Effects of 17-allylamino-17-demethoxygeldanamycin (17-AAG) on pediatric acute lymphoblastic leukemia (ALL) with respect to Bcr-Abl status and imatinib mesylate sensitivity. Pediatr Res 57(3):430–437. doi: 10.1203/01.PDR.0000153871.45184.19 PubMedCrossRefGoogle Scholar
  26. 26.
  27. 27.
    Kato H, Honma R, Sanda T et al (2007) Knock down of hSNF5/Ini1 causes cell cycle arrest and apoptosis in a p53-dependent manner. Biochem Biophys Res Commun 28;361(3):580–585CrossRefGoogle Scholar
  28. 28.
    García-Echeverría C, Pearson MA, Marti A et al (2004) In vivo antitumor activity of NVP-AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell 5(3):231–239. doi: 10.1016/S1535-6108(04)00051-0 PubMedCrossRefGoogle Scholar
  29. 29.
    Tanno B, Mancini C, Vitali R et al (2006) Down-regulation of insulin-like growth factor I receptor activity by NVP-AEW541 has an antitumor effect on neuroblastoma cells in vitro and in vivo. Clin Cancer Res 12(22):6772–6780. doi: 10.1158/1078-0432.CCR-06-1479 PubMedCrossRefGoogle Scholar
  30. 30.
    Tazzari PL, Tabellini G, Bortul R et al (2007) The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion. Leukemia 21(5):886–896PubMedGoogle Scholar
  31. 31.
    Butler AA, Yakar S, Gewolb IH et al (1998) Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comp Biochem Physiol B Biochem Mol Biol 121(1):19–26. doi: 10.1016/S0305-0491(98)10106-2 PubMedCrossRefGoogle Scholar
  32. 32.
    Thorsen F, Tysnes BB (1997) Brain tumor cell invasion, anatomical and biological considerations. Anticancer Res 17(6B):4121–4126PubMedGoogle Scholar
  33. 33.
    Lu L, Wilkinson EJ, Yachnis AT (2000) CSF cytology of atypical teratoid/rhabdoid tumor of the brain in a two-year-old girl: a case report. Diagn Cytopathol 23(5):329–332. doi :10.1002/1097-0339(200011)23:5<329::AID-DC9>3.0.CO;2-WGoogle Scholar
  34. 34.
    Woiciechowsky C, Asadullah K, Nestler D et al (1997) Different release of cytokines into the cerebrospinal fluid following surgery for intra- and extra-axial brain tumors. Acta Neurochir (Wien) 139(7):619–624. doi: 10.1007/BF01411996 CrossRefGoogle Scholar
  35. 35.
    Judkins AR, Burger PC, Hamilton RL et al (2005) INI1 protein expression distinguishes atypical teratoid/rhabdoid tumor from choroid plexus carcinoma. J Neuropathol Exp Neurol 64(5):391–397PubMedGoogle Scholar
  36. 36.
    Ning S, Knox SJ (2006) Optimization of combination therapy of arsenic trioxide and fractionated radiotherapy for malignant glioma. Int J Radiat Oncol Biol Phys 65(2):493–498. doi: 10.1016/j.ijrobp. 2005.12.015 PubMedGoogle Scholar
  37. 37.
    Bykov VJ, Issaeva N, Shilov A et al (2002) Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8(3):282–288. doi: 10.1038/nm0302-282 PubMedCrossRefGoogle Scholar
  38. 38.
    Rehman A, Chahal MS, Tang X et al (2005) Proteomic identification of heat shock protein 90 as a candidate target for p53 mutation reactivation by PRIMA-1 in breast cancer cells. Breast Cancer Res 7(5):R765–R774. doi: 10.1186/bcr1290 PubMedCrossRefGoogle Scholar
  39. 39.
    Arcaro A, Doepfner KT, Boller D et al (2007) Novel role for insulin as an autocrine growth factor for malignant brain tumour cells. Biochem J 406(1):57–66. doi: 10.1042/BJ20070309 PubMedCrossRefGoogle Scholar
  40. 40.
    Ogino S, Kubo S, Abdul-Karim FW et al (2006) Comparative immunohistochemical study of insulin-like growth factor II and insulin-like growth factor receptor type 1 in pediatric brain tumors. Pediatr Dev Pathol 4(1):23–31. doi: 10.1007/s100240010112 CrossRefGoogle Scholar
  41. 41.
    Yee D (2006) Targeting insulin-like growth factor pathways. Br J Cancer 94(4):465–468. doi: 10.1038/sj.bjc.6602963 PubMedCrossRefGoogle Scholar
  42. 42.
    Miller BS, Yee D (2005) Type I insulin-like growth factor receptor as a therapeutic target in cancer. Cancer Res 65(22):10123–10127. doi: 10.1158/0008-5472.CAN-05-2752 PubMedCrossRefGoogle Scholar
  43. 43.
    Salisbury AJ, Macaulay VM (2003) Development of molecular agents for IGF receptor targeting. Horm Metab Res 35(11–12):843–849PubMedGoogle Scholar
  44. 44.
    Aro AL, Savikko J, Pulkkinen V, von Willebrand E (2002) Expression of insulin-like growth factors IGF-I and IGF-II, and their receptors during the growth and megakaryocytic differentiation of K562 cells. Leuk Res 26(9):831–837. doi: 10.1016/S0145-2126(02)00006-1 PubMedCrossRefGoogle Scholar
  45. 45.
    Paonessa F, Foti D, Costa V et al (2006) Activator protein-2 overexpression accounts for increased insulin receptor expression in human breast cancer. Cancer Res 66(10):5085–5093. doi: 10.1158/0008-5472.CAN-05-3678 PubMedCrossRefGoogle Scholar
  46. 46.
    Haluska P, Carboni JM, Loegering DA et al (2006) In vitro and in vivo antitumor effects of the dual insulin-like growth factor-I/insulin receptor inhibitor, BMS-554417. Cancer Res 66(1):362–371. doi: 10.1158/0008-5472.CAN-05-1107 PubMedCrossRefGoogle Scholar
  47. 47.
    Funa K, Uramoto H (2003) Regulatory mechanisms for the expression and activity of platelet-derived growth factor receptor. Acta Biochim Pol 50(3):647–658PubMedGoogle Scholar
  48. 48.
    George D (2003) Targeting PDGF receptors in cancer—rationales and proof of concept clinical trials. Adv Exp Med Biol 532:141–151PubMedGoogle Scholar
  49. 49.
    Bodey B, Kaiser HE, Siegel SE (2005) Epidermal growth factor receptor (EGFR) expression in childhood brain tumors. In Vivo 19(5):931–941PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Aru Narendran
    • 1
    Email author
  • Lucas Coppes
    • 1
  • Aarthi Jayanthan
    • 1
  • Michael Coppes
    • 1
  • Bijan Teja
    • 1
  • Delphine Bernoux
    • 1
  • David George
    • 1
  • Douglas Strother
    • 1
  1. 1.Translational Research Laboratories, Southern Alberta Children’s Cancer ProgramThe University of CalgaryCalgaryCanada

Personalised recommendations