Journal of Neuro-Oncology

, Volume 90, Issue 2, pp 133–140

Genomic changes in progression of low-grade gliomas

  • Ahmed Idbaih
  • Rosana Carvalho Silva
  • Emmanuelle Crinière
  • Yannick Marie
  • Catherine Carpentier
  • Blandine Boisselier
  • Sophie Taillibert
  • Audrey Rousseau
  • Karima Mokhtari
  • François Ducray
  • Joelle Thillet
  • Marc Sanson
  • Khê Hoang-Xuan
  • Jean-Yves Delattre
Lab. Investigation - Human/Animal Tissue

Abstract

Using a one-megabase BAC-based array comparative genomic hybridization technique (aCGH), we have investigated a series of 16 low-grade gliomas (LGGs) and their subsequent progression to higher-grade malignancies. The most frequent chromosome imbalances in primary tumors were gains of chromosomes 7q, 8q, and 22q, and losses of chromosomes 1p, 13q, and 19q. In tumor progression, gains of chromosomes 11q, 7q, 20q, and 21q, and losses of chromosomes 9p, including CDKN2A locus, 19q, 14q, 1p, and 6q were the most frequent genomic disequilibria. Progressive tumors were more imbalanced than primary tumors in terms of altered chromosomal arms (3.8 vs. 6.6 in mean abnormal chromosomal arm) and altered BACs (17 vs. 21%). Interestingly, putative novel candidate genes associated with glioma progression were identified, in particular DOCK8, PTPRD, CER1, TPHO, DHFR, MSH3, ETS1, ACACA, and CSE1L.

Keywords

Glioma Progression Genomics CGH Array 

References

  1. 1.
    Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109. doi:10.1007/s00401-007-0243-4 PubMedCrossRefGoogle Scholar
  2. 2.
    van den Bent MJ, Afra D, de Witte O et al (2005) Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet 366:985–990. doi:10.1016/S0140-6736(05)67070-5 PubMedCrossRefGoogle Scholar
  3. 3.
    Hulsebos TJ, Oskam NT, Troost D et al (1998) Dynamics of genetic alterations associated with glioma recurrence. Genes Chromosomes Cancer 23:153–158. doi :10.1002/(SICI)1098-2264(199810)23:2<153::AID-GCC8>3.0.CO;2-1Google Scholar
  4. 4.
    Hulsebos TJ, Troost D, Leenstra S (2004) Molecular-genetic characterisation of gliomas that recur as same grade or higher grade tumours. J Neurol Neurosurg Psychiatry 75:723–726. doi:10.1136/jnnp. 2003.025031 PubMedCrossRefGoogle Scholar
  5. 5.
    Jeuken JW, Sprenger SH, Vermeer H et al (2002) Chromosomal imbalances in primary oligodendroglial tumors and their recurrences: clues about malignant progression detected using comparative genomic hybridization. J Neurosurg 96:559–564PubMedCrossRefGoogle Scholar
  6. 6.
    Weber RG, Sabel M, Reifenberger J et al (1996) Characterization of genomic alterations associated with glioma progression by comparative genomic hybridization. Oncogene 13:983–994PubMedGoogle Scholar
  7. 7.
    Roversi G, Pfundt R, Moroni RF et al (2006) Identification of novel genomic markers related to progression to glioblastoma through genomic profiling of 25 primary glioma cell lines. Oncogene 25:1571–1583. doi:10.1038/sj.onc.1209177 PubMedCrossRefGoogle Scholar
  8. 8.
    Neuvial P, Hupe P, Brito I, et al (2006) Spatial normalization of array-CGH data. BMC Bioinformatics 7:264. doi:10.1186/1471-2105-7-264
  9. 9.
    Hupé P, Stransky N, Thiery JP et al (2004) Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics 20:3413–3422. doi:10.1093/bioinformatics/bth418 PubMedCrossRefGoogle Scholar
  10. 10.
    La Rosa P, Viara E, Hupe P et al (2006) VAMP: visualization and analysis of array-CGH, transcriptome and other molecular profiles. Bioinformatics 22:2066–2073. doi:10.1093/bioinformatics/btl359 PubMedCrossRefGoogle Scholar
  11. 11.
    Liva S, Hupe P, Neuvial P et al (2006) CAPweb: a bioinformatics CGH array analysis platform. Nucleic Acids Res 34:W477–W481. doi:10.1093/nar/gkl215 PubMedCrossRefGoogle Scholar
  12. 12.
    Idbaih A, Boisselier B, Sanson M et al (2007) Tumor genomic profiling and TP53 germline mutation analysis of first-degree relative familial gliomas. Cancer Genet Cytogenet 176:121–126. doi:10.1016/j.cancergencyto.2007.04.012 PubMedCrossRefGoogle Scholar
  13. 13.
    Tenenbaum L, Teugels E, Dogusan Z et al (1996) Plastic phenotype of human oligodendroglial tumour cells in vitro. Neuropathol Appl Neurobiol 22:302–310. doi:10.1111/j.1365-2990.1996.tb01108.x PubMedCrossRefGoogle Scholar
  14. 14.
    Gius D, Funk MC, Chuang EY et al (2007) Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates. Cancer Res 67:7113–7123. doi:10.1158/0008-5472.CAN-07-0260 PubMedCrossRefGoogle Scholar
  15. 15.
    Nakamura M, Ishida E, Shimada K et al (2005) Frequent LOH on 22q12.3 and TIMP-3 inactivation occur in the progression to secondary glioblastomas. Lab Invest 85:165–175. doi:10.1038/labinvest.3700223 PubMedCrossRefGoogle Scholar
  16. 16.
    Jain AN, Chin K, Børresen-Dale AL et al (2001) Quantitative analysis of chromosomal CGH in human breast tumors associates copy number abnormalities with p53 status and patient survival. Proc Natl Acad Sci USA 98:7952–7957. doi:10.1073/pnas.151241198 PubMedCrossRefGoogle Scholar
  17. 17.
    Takahashi K, Kohno T, Ajima R et al (2006) Homozygous deletion and reduced expression of the DOCK8 gene in human lung cancer. Int J Oncol 28:321–328PubMedGoogle Scholar
  18. 18.
    Nagayama K, Kohno T, Sato M et al (2007) Homozygous deletion scanning of the lung cancer genome at a 100-kb resolution. Genes Chromosomes Cancer 46:1000–1010. doi:10.1002/gcc.20485 PubMedCrossRefGoogle Scholar
  19. 19.
    Petursdottir TE, Thorsteinsdottir U, Jonasson JG et al (2004) Interstitial deletions including chromosome 3 common eliminated region 1 (C3CER1) prevail in human solid tumors from 10 different tissues. Genes Chromosomes Cancer 41:232–242. doi:10.1002/gcc.20072 PubMedCrossRefGoogle Scholar
  20. 20.
    Rácz A, Brass N, Heckel D et al (1999) Expression analysis of genes at 3q26-q27 involved in frequent amplification in squamous cell lung carcinoma. Eur J Cancer 35:641–646. doi:10.1016/S0959-8049(98)00419-5 PubMedCrossRefGoogle Scholar
  21. 21.
    Crossen PE, Morrison MJ, Rodley P et al (1999) Identification of amplified genes in a patient with acute myeloid leukemia and double minute chromosomes. Cancer Genet Cytogenet 113:126–133. doi:10.1016/S0165-4608(99)00018-7 PubMedCrossRefGoogle Scholar
  22. 22.
    Tong CY, Hui AB, Yin XL et al (2004) Detection of oncogene amplifications in medulloblastomas by comparative genomic hybridization and array-based comparative genomic hybridization. J Neurosurg 100:187–193PubMedGoogle Scholar
  23. 23.
    Matheson EC, Hogarth LA, Case MC et al (2007) DHFR and MSH3 co-amplification in childhood acute lymphoblastic leukaemia, in vitro and in vivo. Carcinogenesis 28:1341–1346. doi:10.1093/carcin/bgl235 PubMedCrossRefGoogle Scholar
  24. 24.
    Hui AB, Lo KW, Yin XL et al (2001) Detection of multiple gene amplifications in glioblastoma multiforme using array-based comparative genomic hybridization. Lab Invest 81:717–723PubMedCrossRefGoogle Scholar
  25. 25.
    Walker C, du Plessis DG, Joyce KA et al (2003) Phenotype versus genotype in gliomas displaying inter- or intratumoral histological heterogeneity. Clin Cancer Res 9:4841–4851PubMedGoogle Scholar
  26. 26.
    Kros JM, van Run PR, Alers JC et al (2001) Spatial variability of genomic aberrations in a large glioblastoma resection specimen. Acta Neuropathol 102:103–109PubMedGoogle Scholar
  27. 27.
    Jung V, Romeike BF, Henn W et al (1999) Evidence of focal genetic microheterogeneity in glioblastoma multiforme by area-specific CGH on microdissected tumor cells. J Neuropathol Exp Neurol 58:993–999. doi:10.1097/00005072-199909000-00009 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Ahmed Idbaih
    • 1
    • 2
    • 3
  • Rosana Carvalho Silva
    • 1
    • 2
  • Emmanuelle Crinière
    • 1
    • 2
  • Yannick Marie
    • 1
    • 2
  • Catherine Carpentier
    • 1
    • 2
  • Blandine Boisselier
    • 1
    • 2
  • Sophie Taillibert
    • 3
  • Audrey Rousseau
    • 1
    • 2
    • 4
  • Karima Mokhtari
    • 1
    • 2
    • 4
  • François Ducray
    • 1
    • 2
    • 3
  • Joelle Thillet
    • 1
    • 2
  • Marc Sanson
    • 1
    • 2
    • 3
  • Khê Hoang-Xuan
    • 1
    • 2
    • 3
  • Jean-Yves Delattre
    • 1
    • 2
    • 3
  1. 1.INSERM Unité 711ParisFrance
  2. 2.Laboratoire Biologie des Interactions Neurone-Glie, Groupe hospitalier Pitié-SalpêtrièreUniversité Pierre et Marie Curie-Paris6ParisFrance
  3. 3.AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie MazarinParisFrance
  4. 4.Laboratoire de Neuropathologie R EscourolleHôpital Pitié-SalpêtrièreParisFrance

Personalised recommendations