Journal of Neuro-Oncology

, Volume 90, Issue 1, pp 47–51

FDG-PET to predict different patterns of progression in multicentric glioblastoma: a case report

  • Cécile Colavolpe
  • Eric Guedj
  • Philippe Metellus
  • Maryline Barrie
  • Dominique Figarella-Branger
  • Olivier Mundler
  • Olivier Chinot
Clinical-Patient Studies


True multicentric glioblastoma multiforme (GBM) is rare and consists of separate distinct tumors in different cerebral lobes or hemispheres without any apparent route of dissemination. Few data are available describing its imaging using positron emission tomography (PET) with [18F]-fluoro-2-deoxy-d-glucose (FDG). In this paper, we report on the case of a man with bifocal tumor in the right frontal and temporal lobes who underwent FDG-PET imaging. Visual and semiquantitative analysis showed two different metabolic patterns with much more intense uptake in the smaller temporal lesion. Subtotal surgical removal of the main frontal lesion allowed satisfactory control in the operative site, whereas the temporal lesion was rapidly progressive with occurrence of necrosis, which led to a second neurosurgery. The diagnosis of glioblastoma was confirmed by neuropathological examination in both cases but with much higher immunohistochemical expression of O6-methylguanine-DNA-methyltransferase (MGMT) in the temporal lesion. This report illustrates the potential interest of FDG-PET in multicentric GBMs to identify different metabolic patterns, in accordance with clinical, morphological, and molecular aggressiveness.


Brain tumor Fluorodeoxyglucose F18 Glioblastoma multiforme Multicentric gliomas Positron emission tomography 


  1. 1.
    Batzdorf U, Malumid N (1963) The problem of multicentric gliomas. J Neurosurg 20:122–136CrossRefPubMedGoogle Scholar
  2. 2.
    Graham DI, Lantos PL (2002) Greenfield’s neuropathology, 7th edn. Arnold, LondonGoogle Scholar
  3. 3.
    Salvati M, Caroli E, Orlando ER, Frati A, Artizzu S, Ferrante L (2003) Multicentric glioma: our experience in 25 patients and critical review of the literature. Neurosurg Rev 26:275–279CrossRefPubMedGoogle Scholar
  4. 4.
    Jawahar A, Weilbaecher C, Shorter C et al (2003) Multicentric glioblastoma multiforme determined by positron emission tomography: a case report. Clin Neurol Neurosurg 106:38–40CrossRefPubMedGoogle Scholar
  5. 5.
    Sato K, Kameyama M, Ishiwata K et al (1994) Multicentric glioma studied with positron emission tomography. Surg Neurol 42:14–18CrossRefPubMedGoogle Scholar
  6. 6.
    Schifter T, Hoffman JM, Hanson MW et al (1993) Serial FDG-PET studies in the prediction of survival in patients with primary brain tumours. J Comput Assist Tomogr 17:509–561CrossRefPubMedGoogle Scholar
  7. 7.
    Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109CrossRefPubMedGoogle Scholar
  8. 8.
    Ouafik L, Sauze S, Boudouresque F et al (2002) Neutralization of adrenomedullin inhibits the growth of human glioblastoma cell lines in vitro and suppresses tumor xenograft growth in vivo. Am J Pathol 160:1279–1292CrossRefPubMedGoogle Scholar
  9. 9.
    Stupp R, Mason WP, Van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMedGoogle Scholar
  10. 10.
    Esteller M, Garcia-Foncillas J, Andion E et al (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343:1350–1354CrossRefPubMedGoogle Scholar
  11. 11.
    Pegg AE, Dolan ME, Moscghel RC (1995) Structure, function, and inhibition of O6-alkylguanine-DNA alkyltransferase. Prog Nucleic Acid Res Mol Biol 51:167–223CrossRefPubMedGoogle Scholar
  12. 12.
    Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003CrossRefPubMedGoogle Scholar
  13. 13.
    Sharma MK, Mansur DB, Reifenberger G et al (2007) Distinct genetic signatures among pilocytic astrocytomas relate to their brain region origin. Cancer Res 67:890–900CrossRefPubMedGoogle Scholar
  14. 14.
    Taylor MD, Poppleton H, Fuller C et al (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335CrossRefPubMedGoogle Scholar
  15. 15.
    Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401CrossRefPubMedGoogle Scholar
  16. 16.
    Vescovi AL, Galli R, Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6:425–436CrossRefPubMedGoogle Scholar
  17. 17.
    Zeppernick F, Ahmadi R, Campos B et al (2008) Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 14:123–129CrossRefPubMedGoogle Scholar
  18. 18.
    De Witte O, Lefranc F, Levivier M et al (2000) FDG-PET as a prognostic factor in high-grade astrocytoma. J Neurooncol 49:157–163CrossRefPubMedGoogle Scholar
  19. 19.
    Padma MV, Said S, Jacobs M et al (2003) Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol 64:227–237CrossRefPubMedGoogle Scholar
  20. 20.
    Kato T, Aida T, Abe H et al (1990) Clinicopathological study of multiple gliomas—report of three cases. Neurol Med Chir (Tokyo) 30:604–609CrossRefGoogle Scholar
  21. 21.
    Chadduck WM, Roycroft D, Brown MW (1983) Multicentric glioma as a cause of multiple cerebral lesions. Neurosurgery 13:170–175CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Cécile Colavolpe
    • 1
  • Eric Guedj
    • 1
  • Philippe Metellus
    • 2
  • Maryline Barrie
    • 3
  • Dominique Figarella-Branger
    • 4
  • Olivier Mundler
    • 1
  • Olivier Chinot
    • 3
  1. 1.Department of Nuclear MedicineCentre Hospitalo-Universitaire de la Timone (CHU Timone)Marseille Cedex 5France
  2. 2.Department of NeurosurgeryCHU TimoneMarseille Cedex 5France
  3. 3.Department of Neuro-oncologyCHU TimoneMarseille Cedex 5France
  4. 4.Department of PathologyCHU TimoneMarseille Cedex 5France

Personalised recommendations