Journal of Neuro-Oncology

, Volume 88, Issue 3, pp 281–291 | Cite as

Gene expression profile analysis of primary glioblastomas and non-neoplastic brain tissue: identification of potential target genes by oligonucleotide microarray and real-time quantitative PCR

  • Carlos A. ScrideliEmail author
  • Carlos G. CarlottiJr.
  • Oswaldo K. Okamoto
  • Vanessa S. Andrade
  • Maria A. A. Cortez
  • Fábio J. N. Motta
  • Agda K. Lucio-Eterovic
  • Luciano Neder
  • Sérgio Rosemberg
  • Sueli M. Oba-Shinjo
  • Suely K. N. Marie
  • Luíz G. Tone
Lab. investigation-human/animal tissue


The prognosis of glioblastomas is still extremely poor and the discovery of novel molecular therapeutic targets can be important to optimize treatment strategies. Gene expression analyses comparing normal and neoplastic tissues have been used to identify genes associated with tumorigenesis and potential therapeutic targets. We have used this approach to identify differentially expressed genes between primary glioblastomas and non-neoplastic brain tissues. We selected 20 overexpressed genes related to cell cycle, cellular movement and growth, proliferation and cell-to-cell signaling and analyzed their expression levels by real time quantitative PCR in cDNA obtained from microdissected fresh tumor tissue from 20 patients with primary glioblastomas and from 10 samples of non-neoplastic white matter tissue. The gene expression levels were significantly higher in glioblastomas than in non-neoplastic white matter in 18 out of 20 genes analyzed: P < 0.00001 for CDKN2C, CKS2, EEF1A1, EMP3, PDPN, BNIP2, CA12, CD34, CDC42EP4, PPIE, SNAI2, GDF15 and MMP23b; and NFIA (P: 0.0001), GPS1 (P: 0.0003), LAMA1 (P: 0.002), STIM1 (P: 0.006), and TASP1 (P: 0.01). Five of these genes are located in contiguous loci at 1p31–36 and 2 at 17q24–25 and 8 of them encode surface membrane proteins. PDPN and CD34 protein expression were evaluated by immunohistochemistry and they showed concordance with the PCR results. The present results indicate the presence of 18 overexpressed genes in human primary glioblastomas that may play a significant role in the pathogenesis of these tumors and that deserve further functional investigation as attractive candidates for new therapeutic targets.


Glioblastoma Brain Gene expression Microarray RQ-PCR 



We thank Rosane P. Queiroz, Sandra L. B. P. Martins and Miyuki Uno for technical assistance and Dr. Paulo Henrique Aguiar for neurosurgical assistance in sample collection. This work was supported by the Brazilian Governmental agencies FAPESP (Grant No. 04/1233-6) and FAEPA.

Supplementary material

11060_2008_9579_MOESM1_ESM.xls (108 kb)
The complete list of the 562 genes showing at least 2-fold increase in expression in glioblastomas as compared to non neoplastic brain and grouped according to GO criteria. (PDF 108 KB)


  1. 1.
    Kheihues P, Cavanee WK (eds) (2000) World Health Organization classification of tumours. Pathology and genetics of tumours of the nervous system. IARC Press, Lyon, FranceGoogle Scholar
  2. 2.
    Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY (2003) Primary brain tumours in adults. Lancet 361:323–331PubMedCrossRefGoogle Scholar
  3. 3.
    Mischel PS, Cloughesy TF, Nelson SF (2004) DNA-microarray analysis of brain cancer: molecular classification for therapy. Nat Rev Neurosci 5:782–792PubMedCrossRefGoogle Scholar
  4. 4.
    Scrideli CA, Carlotti CG Jr, Mata JF et al (2007) Prognostic significance of co-overexpression of the EGFR/IGFBP-2/HIF-2A genes in astrocytomas. J Neurooncol 83:233–239PubMedCrossRefGoogle Scholar
  5. 5.
    Godard S, Getz G, Delorenzi M et al (2003) Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res 63:6613–6625PubMedGoogle Scholar
  6. 6.
    Liang Y, Diehn M, Watson N et al (2005) Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc Natl Acad Sci USA 102:5814–5819PubMedCrossRefGoogle Scholar
  7. 7.
    Cavalieri D, De Filippo C (2005) Bioinformatic methods for integrating whole-genome expression results into cellular networks. Drug Discov Today 10:727–734PubMedCrossRefGoogle Scholar
  8. 8.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  9. 9.
    Shibahara J, Kashima T, Kikuchi Y, Kunita A, Fukayama M (2006) Podoplanin is expressed in subsets of tumors of the central nervous system. Virchows Arch 448:493–499PubMedCrossRefGoogle Scholar
  10. 10.
    Santarius T, Kirsch M, Nikas DC, Imitola J, Black PM (2000) Molecular analysis of alterations of the p18INK4c gene in human meningiomas. Neuropathol Appl Neurobiol 26:67–75PubMedCrossRefGoogle Scholar
  11. 11.
    Korshunov A, Golanov A (2002) Immunohistochemical analysis of p18INK4C and p14ARF protein expression in 117 oligodendrogliomas: correlation with tumor grade and clinical outcome. Arch Pathol Lab Med 126:42–48PubMedGoogle Scholar
  12. 12.
    Korshunov A, Shishkina L, Golanov A (2003) Immunohistochemical analysis of p16INK4a, p14ARF, p18INK4c, p21CIP1, p27KIP1 and p73 expression in 271 meningiomas correlation with tumor grade and clinical outcome. Int J Cancer 104:728–734PubMedCrossRefGoogle Scholar
  13. 13.
    Tschan MP, Peters UR, Cajot JF, Betticher DC, Fey MF, Tobler A (1999) The cyclin-dependent kinase inhibitors p18INK4c and p19INK4d are highly expressed in CD34 + progenitor and acute myeloid leukaemic cells but not in normal differentiated myeloid cells. Br J Haematol 106:644–651PubMedCrossRefGoogle Scholar
  14. 14.
    Ashida S, Nakagawa H, Katagiri T et al (2004) Molecular features of the transition from prostatic intraepithelial neoplasia (PIN) to prostate cancer: genome-wide gene-expression profiles of prostate cancers and PINs. Cancer Res 64:5963–5972PubMedCrossRefGoogle Scholar
  15. 15.
    Uchikado Y, Inoue H, Haraguchi N et al (2006) Gene expression profiling of lymph node metastasis by oligomicroarray analysis using laser microdissection in esophageal squamous cell carcinoma. Int J Oncol 29:1337–1347PubMedGoogle Scholar
  16. 16.
    Li M, Lin YM, Hasegawa S et al (2004) Genes associated with liver metastasis of colon cancer, identified by genome-wide cDNA microarray. Int J Oncol 24:305–312PubMedGoogle Scholar
  17. 17.
    Lyng H, Brovig RS, Svendsrud DH et al (2006) Gene expressions and copy numbers associated with metastatic phenotypes of uterine cervical cancer. BMC Genomics 7:268PubMedCrossRefGoogle Scholar
  18. 18.
    Wong YF, Cheung TH, Tsao GS et al (2006) Genome-wide gene expression profiling of cervical cancer in Hong Kong women by oligonucleotide microarray. Int J Cancer 118:2461–2469PubMedCrossRefGoogle Scholar
  19. 19.
    Kawakami K, Enokida H, Tachiwada T et al (2006) Identification of differentially expressed genes in human bladder cancer through genome-wide gene expression profiling. Oncol Rep 16:521–531PubMedGoogle Scholar
  20. 20.
    Rickman DS, Bobek MP, Misek DE et al (2001) Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res 61:6885–6891PubMedGoogle Scholar
  21. 21.
    Li KK, Pang JC, Chung NY et al (2007) EMP3 overexpression is associated with oligodendroglial tumors retaining chromosome arms 1p and 19q. Int J Cancer 120:947–950PubMedCrossRefGoogle Scholar
  22. 22.
    Mackay A, Jones C, Dexter T et al (2003) cDNA microarray analysis of genes associated with ERBB2 (HER2/neu) overexpression in human mammary luminal epithelial cells. Oncogene 22:2680–2688PubMedCrossRefGoogle Scholar
  23. 23.
    Sabbioni S, Barbanti-Brodano G, Croce CM, Negrini M (1997) GOK: a gene at 11p15 involved in rhabdomyosarcoma and rhabdoid tumor development. Cancer Res 57:4493–4497PubMedGoogle Scholar
  24. 24.
    Anand N, Murthy S, Amann G et al (2002) Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer. Nat Genet 31:301–305PubMedGoogle Scholar
  25. 25.
    Tomlinson VA, Newbery HJ, Wray NR et al (2005) Translation elongation factor eEF1A2 is a potential oncoprotein that is overexpressed in two-thirds of breast tumours. BMC Cancer 5:113PubMedCrossRefGoogle Scholar
  26. 26.
    Zhou X, Temam S, Oh M et al (2006) Global expression-based classification of lymph node metastasis and extracapsular spread of oral tongue squamous cell carcinoma. Neoplasia 8:925–932PubMedCrossRefGoogle Scholar
  27. 27.
    De Arcangelis A, Lefebvre O, Mechine-Neuville A et al (2001) Overexpression of laminin alpha1 chain in colonic cancer cells induces an increase in tumor growth. Int J Cancer 94:44–53PubMedCrossRefGoogle Scholar
  28. 28.
    Schuur ER, Kruse U, Iacovoni JS, Vogt PK (1995) Nuclear factor I interferes with transformation induced by nuclear oncogenes. Cell Growth Differ 6:219–227PubMedGoogle Scholar
  29. 29.
    Deneen B, Ho R, Lukaszewicz A, Hochstim CJ, Gronostajski RM, Anderson DJ (2006) The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52:953–968PubMedCrossRefGoogle Scholar
  30. 30.
    Schacht V, Dadras SS, Johnson LA, Jackson DG, Hong YK, Detmar M (2005) Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol 166:913–921PubMedGoogle Scholar
  31. 31.
    Wicki A, Christofori G (2007) The potential role of podoplanin in tumour invasion. Br J Cancer 96:1–5PubMedCrossRefGoogle Scholar
  32. 32.
    Yuan P, Temam S, El Naggar A et al (2006) Overexpression of podoplanin in oral cancer and its association with poor clinical outcome. Cancer 107:563–569PubMedCrossRefGoogle Scholar
  33. 33.
    Renyi-Vamos F, Tovari J, Fillinger J et al (2005) Lymphangiogenesis correlates with lymph node metastasis, prognosis, and angiogenic phenotype in human non-small cell lung cancer. Clin Cancer Res 11:7344–7353PubMedCrossRefGoogle Scholar
  34. 34.
    Mishima K, Kato Y, Kaneko MK, Nishikawa R, Hirose T, Matsutani M (2006) Increased expression of podoplanin in malignant astrocytic tumors as a novel molecular marker of malignant progression. Acta Neuropathol (Berl) 111:483–488CrossRefGoogle Scholar
  35. 35.
    Hsieh JJ, Cheng EH, Korsmeyer SJ (2003) Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 115:293–303PubMedCrossRefGoogle Scholar
  36. 36.
    Takeda S, Chen DY, Westergard TD et al (2006) Proteolysis of MLL family proteins is essential for taspase1-orchestrated cell cycle progression. Genes Dev 20:2397–2409PubMedCrossRefGoogle Scholar
  37. 37.
    Anderson M, Fair K, Amero S, Nelson S, Harte PJ, Diaz MO (2002) A new family of cyclophilins with an RNA recognition motif that interact with members of the trx/MLL protein family in Drosophila and human cells. Dev Genes Evol 212:107–113PubMedCrossRefGoogle Scholar
  38. 38.
    Fair K, Anderson M, Bulanova E, Mi H, Tropschug M, Diaz MO (2001) Protein interactions of the MLL PHD fingers modulate MLL target gene regulation in human cells. Mol Cell Biol 21:3589–3597PubMedCrossRefGoogle Scholar
  39. 39.
    Xia ZB, Anderson M, Diaz MO, Zeleznik L (2003) MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc Natl Acad Sci USA 100:8342–8347PubMedCrossRefGoogle Scholar
  40. 40.
    Kim JO, Nau MM, Allikian KA et al (1998) Co-amplification of a novel cyclophilin-like gene (PPIE) with L-myc in small cell lung cancer cell lines. Oncogene 17:1019–1026PubMedCrossRefGoogle Scholar
  41. 41.
    Hirsch DS, Pirone DM, Burbelo PD (2001) A new family of Cdc42 effector proteins, CEPs, function in fibroblast and epithelial cell shape changes. J Biol Chem 276:875–883PubMedCrossRefGoogle Scholar
  42. 42.
    Aznar S, Lacal JC (2001) Rho signals to cell growth and apoptosis. Cancer Lett 165:1–10PubMedCrossRefGoogle Scholar
  43. 43.
    Goldberg L, Kloog Y (2006) A Ras inhibitor tilts the balance between Rac and Rho and blocks phosphatidylinositol 3-kinase-dependent glioblastoma cell migration. Cancer Res 66:11709–11717PubMedCrossRefGoogle Scholar
  44. 44.
    Chan AY, Coniglio SJ, Chuang YY et al (2005) Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion. Oncogene 24:7821–7829PubMedCrossRefGoogle Scholar
  45. 45.
    Aznar S, Fernandez-Valeron P, Espina C, Lacal JC (2004) Rho GTPases: potential candidates for anticancer therapy. Cancer Lett 206:181–191PubMedCrossRefGoogle Scholar
  46. 46.
    Benitah SA, Valeron PF, van Aelst L, Marshall CJ, Lacal JC (2004) Rho GTPases in human cancer: an unresolved link to upstream and downstream transcriptional regulation. Biochim Biophys Acta 1705:121–132PubMedGoogle Scholar
  47. 47.
    Spain BH, Bowdish KS, Pacal AR et al (1996) Two human cDNAs, including a homolog of Arabidopsis FUS6 (COP11), suppress G-protein- and mitogen-activated protein kinase-mediated signal transduction in yeast and mammalian cells. Mol Cell Biol 16:6698–6706PubMedGoogle Scholar
  48. 48.
    Schwechheimer C (2004) The COP9 signalosome (CSN): an evolutionary conserved proteolysis regulator in eukaryotic development. Biochim Biophys Acta 1695:45–54PubMedCrossRefGoogle Scholar
  49. 49.
    Richardson KS, Zundel W (2005) The emerging role of the COP9 signalosome in cancer. Mol Cancer Res 3:645–653PubMedCrossRefGoogle Scholar
  50. 50.
    Boyd (1994) Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell 79:1121Google Scholar
  51. 51.
    Zhang HM, Cheung P, Yanagawa B, McManus BM, Yang DC (2003) BNips: a group of pro-apoptotic proteins in the Bcl-2 family. Apoptosis 8:229–236PubMedCrossRefGoogle Scholar
  52. 52.
    Nakajima K, Hirose H, Taniguchi M et al (2004) Involvement of BNIP1 in apoptosis and endoplasmic reticulum membrane fusion. EMBO J 23:3216–3226PubMedCrossRefGoogle Scholar
  53. 53.
    Kim JY, Shin HJ, Kim TH et al (2006) Tumor-associated carbonic anhydrases are linked to metastases in primary cervical cancer. J Cancer Res Clin Oncol 132:302–308PubMedCrossRefGoogle Scholar
  54. 54.
    Kim HL, Seligson D, Liu X et al (2004) Using protein expressions to predict survival in clear cell renal carcinoma. Clin Cancer Res 10:5464–5471PubMedCrossRefGoogle Scholar
  55. 55.
    Watson PH, Chia SK, Wykoff CC et al (2003) Carbonic anhydrase XII is a marker of good prognosis in invasive breast carcinoma. Br J Cancer 88:1065–1070PubMedCrossRefGoogle Scholar
  56. 56.
    Ivanov S, Liao SY, Ivanova A et al (2001) Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 158:905–919PubMedGoogle Scholar
  57. 57.
    Blumcke I, Giencke K, Wardelmann E et al (1999) The CD34 epitope is expressed in neoplastic and malformative lesions associated with chronic, focal epilepsies. Acta Neuropathol (Berl) 97:481–490CrossRefGoogle Scholar
  58. 58.
    Deb P, Sharma MC, Tripathi M, Sarat CP, Gupta A, Sarkar C (2006) Expression of CD34 as a novel marker for glioneuronal lesions associated with chronic intractable epilepsy. Neuropathol Appl Neurobiol 32:461–468PubMedCrossRefGoogle Scholar
  59. 59.
    Birner P, Piribauer M, Fischer I et al (2003) Vascular patterns in glioblastoma influence clinical outcome and associate with variable expression of angiogenic proteins: evidence for distinct angiogenic subtypes. Brain Pathol 13:133–143PubMedGoogle Scholar
  60. 60.
    Yue WY, Chen ZP (2005) Does vasculogenic mimicry exist in astrocytoma? J Histochem Cytochem 53:997–1002PubMedCrossRefGoogle Scholar
  61. 61.
    Sharma S, Sharma MC, Gupta DK, Sarkar C (2006) Angiogenic patterns and their quantitation in high grade astrocytic tumors. J Neurooncol 79:19–30PubMedCrossRefGoogle Scholar
  62. 62.
    Korkolopoulou P, Patsouris E, Konstantinidou AE et al (2004) Hypoxia-inducible factor 1alpha/vascular endothelial growth factor axis in astrocytomas. Associations with microvessel morphometry, proliferation and prognosis. Neuropathol Appl Neurobiol 30:267–278PubMedCrossRefGoogle Scholar
  63. 63.
    Karan D, Chen SJ, Johansson SL et al (2003) Dysregulated expression of MIC-1/PDF in human prostate tumor cells. Biochem Biophys Res Commun 305:598–604PubMedCrossRefGoogle Scholar
  64. 64.
    Bauskin AR, Brown DA, Kuffner T et al (2006) Role of macrophage inhibitory cytokine-1 in tumorigenesis and diagnosis of cancer. Cancer Res 66:4983–4986PubMedCrossRefGoogle Scholar
  65. 65.
    Perez-Mancera PA, Perez-Caro M, Gonzalez-Herrero I et al (2005) Cancer development induced by graded expression of Snail in mice. Hum Mol Genet 14:3449–3461PubMedCrossRefGoogle Scholar
  66. 66.
    Shioiri M, Shida T, Koda K et al (2006) Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Br J Cancer 94:1816–1822PubMedCrossRefGoogle Scholar
  67. 67.
    Moreno-Bueno G, Cubillo E, Sarrio D et al (2006) Genetic profiling of epithelial cells expressing e-cadherin repressors reveals a distinct role for snail, slug, and e47 factors in epithelial-mesenchymal transition. Cancer Res 66:9543–9556PubMedCrossRefGoogle Scholar
  68. 68.
    Elloul S, Elstrand MB, Nesland JM et al (2005) Snail, slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer 103:1631–1643PubMedCrossRefGoogle Scholar
  69. 69.
    Come C, Magnino F, Bibeau F et al (2006) Snail and slug play distinct roles during breast carcinoma progression. Clin Cancer Res 12:5395–5402PubMedCrossRefGoogle Scholar
  70. 70.
    Kurrey NK, Amit K, Bapat SA (2005) Snail and slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol 97:155–165PubMedCrossRefGoogle Scholar
  71. 71.
    Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392PubMedCrossRefGoogle Scholar
  72. 72.
    Yan C, Boyd DD (2007) Regulation of matrix metalloproteinase gene expression. J Cell Physiol 211:19–26PubMedCrossRefGoogle Scholar
  73. 73.
    Osada M, Park HL, Park MJ et al (2007) A p53-type response element in the GDF15 promoter confers high specificity for p53 activation. Biochem Biophys Res Commun 354:913–918PubMedCrossRefGoogle Scholar
  74. 74.
    Kraemer K, Schmidt U, Fuessel S et al (2006) Microarray analyses in bladder cancer cells: inhibition of hTERT expression down-regulates EGFR. Int J Cancer 119:1276–1284PubMedCrossRefGoogle Scholar
  75. 75.
    Kim JS, Lee C, Bonifant CL, Ressom H, Waldman T (2007) Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA. Mol Cell Biol 27:662–677PubMedCrossRefGoogle Scholar
  76. 76.
    Zhou X, Temam S, Oh M et al (2006) Global expression-based classification of lymph node metastasis and extracapsular spread of oral tongue squamous cell carcinoma. Neoplasia 8:925–932PubMedCrossRefGoogle Scholar
  77. 77.
    Kim HL, Seligson D, Liu X et al (2005) Using tumor markers to predict the survival of patients with metastatic renal cell carcinoma. J Urol 173:1496–1501PubMedCrossRefGoogle Scholar
  78. 78.
    Mohapatra G, Bollen AW, Kim DH et al (1998) Genetic analysis of glioblastoma multiforme provides evidence for subgroups within the grade. Genes Chromosomes Cancer 21:195–206PubMedCrossRefGoogle Scholar
  79. 79.
    Wiltshire RN, Rasheed BK, Friedman HS, Friedman AH, Bigner SH (2000) Comparative genetic patterns of glioblastoma multiforme: potential diagnostic tool for tumor classification. Neuro-oncol 2:164–173PubMedCrossRefGoogle Scholar
  80. 80.
    Rickert CH, Strater R, Kaatsch P et al (2001) Pediatric high-grade astrocytomas show chromosomal imbalances distinct from adult cases. Am J Pathol 158:1525–1532PubMedGoogle Scholar
  81. 81.
    Korshunov A, Sycheva R, Golanov A (2006) Genetically distinct and clinically relevant subtypes of glioblastoma defined by array-based comparative genomic hybridization (array-CGH). Acta Neuropathol (Berl) 111:465–474CrossRefGoogle Scholar
  82. 82.
    Korshunov A, Sycheva R, Golanov A, Pronin I (2007) Gains at the 1p36 chromosomal region are associated with symptomatic leptomeningeal dissemination of supratentorial glioblastomas. Am J Clin Pathol 127:585–590PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Carlos A. Scrideli
    • 1
    • 2
    Email author
  • Carlos G. CarlottiJr.
    • 3
  • Oswaldo K. Okamoto
    • 4
  • Vanessa S. Andrade
    • 5
  • Maria A. A. Cortez
    • 5
  • Fábio J. N. Motta
    • 5
  • Agda K. Lucio-Eterovic
    • 1
  • Luciano Neder
    • 6
  • Sérgio Rosemberg
    • 7
  • Sueli M. Oba-Shinjo
    • 8
  • Suely K. N. Marie
    • 8
  • Luíz G. Tone
    • 1
  1. 1.Department of Pediatrics, Faculty of Medicine of Ribeirão PretoUniversity of São PauloRibeirao PretoBrazil
  2. 2.Departamento de Puericultura e PediatriaUniversity of São PauloRibeirão PretoBrazil
  3. 3.Department of Surgery, Faculty of Medicine of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  4. 4.Department of Neurology and NeurosurgeryFederal University of São PauloSão PauloBrazil
  5. 5.Department of Genetics, Faculty of Medicine of Ribeirão PretoUniversity of São PauloRibeirao PretoBrazil
  6. 6.Department of Pathology, Faculty of Medicine of Ribeirão PretoUniversity of São PauloRibeirao PretoBrazil
  7. 7.Department of Pathology, Faculty of MedicineUniversity of São PauloSão PauloBrazil
  8. 8.Department of Neurology, Faculty of MedicineUniversity of São PauloSão PauloBrazil

Personalised recommendations