Journal of Neuro-Oncology

, Volume 87, Issue 1, pp 103–109 | Cite as

Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report

  • Walter StummerEmail author
  • Tobias Beck
  • Wolfgang Beyer
  • Jan Hendrik Mehrkens
  • Andreas Obermeier
  • Nima Etminan
  • Herbert Stepp
  • Jörg-Christian Tonn
  • Reinhold Baumgartner
  • Jochen Herms
  • Friedrich Wilhelm Kreth
Clinical-Patient Studies


Glioblastoma multiforme continues to be a devastating disease despite modest improvements in survival achieved at present, and there is an urgent need for innovative treatment concepts. Five-aminolevulinic acid (ALA) is a drug which induces protoporphyrin IX accumulation in malignant gliomas and has been explored for fluorescence-guided resections of these tumors. ALA is also under investigation as a photosensitizer. We report a case of a patient with prior left frontal glioblastoma multiforme treated by surgery, radiation and chemotherapy, who developed a remote lesion in the left insula, which was refractory to secondary treatments. In a compassionate use setting she was treated by oral application of ALA (20 mg/kg bodyweight), and stereotactic phototherapy achieved by positioning four laser diffusors using 3-dimensional irradiation planning, and a 633 nm diode laser. The lesion disappeared 24 h after therapy. Circumferential contrast enhancement was observed at 72 h, which disappeared in the course of subsequential months. Edema resolved completely. The patient is still free of recurrence 56 months after treatment, demonstrating an impressive and long-lasting response to this novel mode of therapy.


ALA Local therapy Malignant glioma Photodynamic therapy Porphyrins Stereotactic surgery Stereotactic Interstitial Glioblastoma 5-aminolevulinic acid Protoporphyrin IX 



This research was funded by Deutsche Krebshilfe; Grant Number: 70-2864


  1. 1.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO; European Organisation for Research, Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  2. 2.
    Brem H, Piantadosi S, Burger PC, Walker M, Selker R, Vick NA, Black K, Sisti M, Brem S, Mohr G et al (1995) Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The polymer-brain tumor treatment group. Lancet 345:1008–1012PubMedCrossRefGoogle Scholar
  3. 3.
    Yung WK, Albright RE, Olson J, Fredericks R, Fink K, Prados MD, Brada M, Spence A, Hohl RJ, Shapiro W, Glantz M, Greenberg H, Selker RG, Vick NA, Rampling R, Friedman H, Phillips P, Bruner J, Yue N, Osoba D, Zaknoen S, Levin VA (2000) A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer 83:588–593PubMedCrossRefGoogle Scholar
  4. 4.
    Kunwar S, Prados MD, Chang SM, Berger MS, Lang FF, Piepmeier JM, Sampson JH, Ram Z, Gutin PH, Gibbons RD, Aldape KD, Croteau DJ, Sherman JW, Puri RK; Cintredekin Besudotox Intraparenchymal Study Group (2007) Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the cintredekin besudotox intraparenchymal study group. J Clin Oncol 25:837–844PubMedCrossRefGoogle Scholar
  5. 5.
    Rainov NG (2000) A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 11:2389–2401PubMedCrossRefGoogle Scholar
  6. 6.
    Stummer W, Stocker S, Novotny A, Heimann A, Sauer O, Kempski O, Plesnila N, Wietzorrek J, Reulen HJ (1998) In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid. J Photochem Photobiol B 45:160–169PubMedCrossRefGoogle Scholar
  7. 7.
    Stummer W, Stocker S, Wagner S, Stepp H, Fritsch C, Goetz C, Goetz AE, Kiefmann R, Reulen HJ (1998) Intraoperative detection of malignant gliomas by 5-aminolevulinic acid induced porphyrin fluorescence. Neurosurgery 42:518–525PubMedCrossRefGoogle Scholar
  8. 8.
    Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: as prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013PubMedGoogle Scholar
  9. 9.
    Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401PubMedCrossRefGoogle Scholar
  10. 10.
    Zelenkov P, Baumgartner R, Bise K, Heide M, Meier R, Stocker S, Sroka R, Goldbrunner R, Stummer W (2007) Acute morphological sequelae of photodynamic therapy with 5-aminolevulinic acid in the C6 spheroid model. J Neuro Oncol 82:49–60CrossRefGoogle Scholar
  11. 11.
    Karmakar S, Banik NL, Patel SJ, Ray SK (2007) 5-Aminolevulinic acid-based photodynamic therapy suppressed survival factors and activated proteases for apoptosis in human glioblastoma U87MG cells. Neurosci Lett 415:242–247PubMedCrossRefGoogle Scholar
  12. 12.
    Inoue H, Kajimoto Y, Shibata MA, Miyoshi N, Ogawa N, Miyatake S, Otsuki Y, Kuroiwa T (2007) Massive apoptotic cell death of human glioma cells via a mitochondrial pathway following 5-aminolevulinic acid-mediated photodynamic therapy. J Neurooncol 83:223–231PubMedCrossRefGoogle Scholar
  13. 13.
    Hirschberg H, Sun CH, Krasieva T, Madsen SJ (2006) Effects of ALA-mediated photodynamic therapy on the invasiveness of human glioma cells. Lasers Surg Med 38:939–945PubMedCrossRefGoogle Scholar
  14. 14.
    Angell-Petersen E, Spetalen S, Madsen SJ, Sun CH, Peng Q, Carper SW, Sioud M, Hirschberg H (2006) Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model. J Neurosurg 104:109–117PubMedGoogle Scholar
  15. 15.
    Olzowy B, Hundt CS, Stocker S, Bise K, Reulen HJ, Stummer W (2002) Photoirradiation therapy of experimental malignant glioma with 5-aminolevulinic acid. J Neurosurg 97:970–976PubMedCrossRefGoogle Scholar
  16. 16.
    Beck TJ, Kreth FW, Beyer W, Mehrkens JH, Obermeier A, Stepp H, Stummer W, Baumgartner R (2007) Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers Surg Med 39:386–393PubMedCrossRefGoogle Scholar
  17. 17.
    Madsen S, Hirschberg H (2006) Photodynamic therapy and detection of high-grade gliomas. J Environ Pathol Toxicol Oncol 25:453–466PubMedGoogle Scholar
  18. 18.
    Powers SK, Cush SS, Walstad DL, Kwock L (1991) Stereotaxic intratumoral photodynamic therapy for recurrent malignant brain-tumors. Neurosurgery 29:688–696PubMedCrossRefGoogle Scholar
  19. 19.
    Krishnamurthy S, Powers SK, Witmer P, Brown T (2000) Optimal light dose for interstitial photodynamic therapy in treatment for malignant brain tumors. Lasers Surg Med 27:224–234PubMedCrossRefGoogle Scholar
  20. 20.
    Schmidt MH, Meyer GA, Reichert KW, Cheng J, Krouwer HG, Ozker K, Whelan HT (2004) Evaluation of photodynamic therapy near functional brain tissue in patients with recurrent brain tumors. J Neuro Oncol 67:201–207CrossRefGoogle Scholar
  21. 21.
    Hebeda KM, Kamphorst W, Sterenborg HJCM, Wolbers JG (1998) Damage to tumour and brain by interstitial photodynamic therapy in the 9L rat tumour model comparing intravenous and intratumoral administration of the photosensitiser. Acta Neurochir 140:495–501CrossRefGoogle Scholar
  22. 22.
    Chen Q, Chopp M, Madigan L, Dereski MO, Hetzel FW (1996) Damage threshold of normal rat brain in photodynamic therapy. Photochem Photobiol 64:163–167PubMedCrossRefGoogle Scholar
  23. 23.
    Dereski MO, Chopp M, Chen Q, Hetzel FW (1989) Normal braintissue response to photodynamic therapy—histology, vascular-permeability and specific-gravity. Photochem Photobiol 50:653–657PubMedCrossRefGoogle Scholar
  24. 24.
    Whelan HT, Schmidt MH, Segura AD, McAuliffe TL, Bajic DM, Murray KJ, Moulder JE, Strother DR, Thomas JP, Meyer GA (1993) The role of photodynamic therapy in posterior fossa brain tumors. A preclinical study in a canine glioma model. J Neurosurgery 79:562–568Google Scholar
  25. 25.
    Stummer W, Gotz C, Hassan A, Heimann A, Kempski O (1993) Kinetics of Photofrin II in perifocal brain edema. Neurosurgery 33:1075–1081PubMedCrossRefGoogle Scholar
  26. 26.
    Stummer W, Hassan A, Kempski O, Goetz C (1996) Photodynamic therapy within edematous brain tissue: considerations on sensitizer dose and time point of laser irradiation. J Photochem Photobiol B 36:179–181PubMedCrossRefGoogle Scholar
  27. 27.
    van Duijnhoven FH, Aalbers RI, Rovers JP, Terpstra OT, Kuppen PJ (2003) The immunological consequences of photodynamic treatment of cancer, a literature review. Immunobiology 207:105–113PubMedCrossRefGoogle Scholar
  28. 28.
    Jalili A, Makowski M, Switaj T, Nowis D, Wilczynski GM, Wilczek E, Chorazy-Massalska M, Radzikowska A, Maslinski W, Bialy L, Sienko J, Sieron A, Adamek M, Basak G, Mroz P, Krasnodebski IW, Jakobisiak M, Golab J (2004) Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells. Clin Cancer Res 10:4498–4508PubMedCrossRefGoogle Scholar
  29. 29.
    Korbelik M, Sun J, Cecic I (2005) Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res 65:1018–1026PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • Walter Stummer
    • 1
    • 5
    Email author
  • Tobias Beck
    • 2
  • Wolfgang Beyer
    • 2
  • Jan Hendrik Mehrkens
    • 3
  • Andreas Obermeier
    • 2
  • Nima Etminan
    • 1
  • Herbert Stepp
    • 2
  • Jörg-Christian Tonn
    • 3
  • Reinhold Baumgartner
    • 2
  • Jochen Herms
    • 4
  • Friedrich Wilhelm Kreth
    • 3
  1. 1.Department of NeurosurgeryHeinrich-Heine-UniversityDuesseldorfGermany
  2. 2.Laser Research LaboratoryLudwig-Maximilians-UniversityMunichGermany
  3. 3.Department of NeurosurgeryLudwig-Maximilians-UniversityMunichGermany
  4. 4.Center for Neuropathology and Prion ResearchLudwig-Maximilians-UniversityMunichGermany
  5. 5.Department of NeurosurgeryUniversity of DüsseldorfDüsseldorfGermany

Personalised recommendations