Journal of Neuro-Oncology

, Volume 85, Issue 3, pp 255–262 | Cite as

1 α-Hydroxyvitamin D2 inhibits growth of human neuroblastoma

  • Paul R. van Ginkel
  • William Yang
  • Marcus M. Marcet
  • Clement C. Chow
  • Amol D. Kulkarni
  • Soesiawati Darjatmoko
  • Mary J. Lindstrom
  • Janice Lokken
  • Saswati Bhattacharya
  • Daniel M. AlbertEmail author
Lab. Investigation-Human/Animal Tissue


Neuroblastoma is the most common extracranial solid tumor in childhood. The poor outcomes of patients with high-risk neuroblastoma have encouraged the search for new therapies. In the current study, the effect of the vitamin D analog 1α-hydroxyvitamin D2 (1α-OH-D2, doxercalciferol) was assessed in a mouse xenograft model of human neuroblastoma. Vitamin D receptor (VDR) expression levels in seven neuroblastoma cell lines were compared using real-time PCR. SK-N-AS cells, which express relatively high levels of VDR, were injected into the flanks of 60 mice. The mice were treated daily via oral gavage for 5 weeks with vehicle (control), 0.15 μg, or 0.3 μg of 1α-OH-D2. The animals were then euthanized, and tumors, sera, and kidneys were collected and analyzed. End tumor volumes were significantly smaller in both the 0.15 μg group (712.07 mm3, P = 0.0121) and 0.3 μg group (772.97 mm3, P = 0.0209) when compared to controls (1,681.75 mm3). In terms of toxicity, serum calcium levels were increased but mortality was minimal in both treatment groups. These results were similar to those previously described in the transgenic (LHβ-Tag) and human xenograft (Y-79) models of retinoblastoma, a related tumor. In vitro cell viability studies of SK-N-AS and NGP cells, which represent two major human neuroblastoma subtypes that differ in their genetic abnormalities as well as their VDR expression levels, show that both are sensitive to calcitriol, the active metabolite of vitamin D3. In conclusion, the present study shows that 1α-OH-D2 can inhibit human neuroblastoma growth in vivo with relatively low toxicity. The safety of 1α-OH-D2 has been extensively studied; the drug is FDA-approved for the treatment of adult kidney patients, and Phase I/II trials have been conducted in adult oncology patients. There should not be major obstacles to starting Phase I and II clinical trials with this drug in pediatric patients with high-risk neuroblastoma.


Neuroblastoma Vitamin D analog Doxercalciferol Xenograft model Serum calcium 



The research reported in this paper was funded by NIH Grant R01-EY001917, and a Core Grant for Vision Research EY016665 with supplemental funding from Research to Prevent Blindness and Bone Care International, now a part of Genzyme Corp. (Cambridge, Massachusetts, USA).

The authors thank Carol Thiele, PhD, for supplying the various neuroblastoma cell lines; Arthur Polans, PhD, for quantifying VDR levels in the cell lines; and Amit Kumar, MD, Stephen Strugnell, PhD, Christine Damico, Elaina Gates, Mark Hopping, and Kate Fahl for their effort, advice, and support. The authors also wish to thank Peter E. Zage, MD, PhD, at The University of Texas M.D. Anderson Cancer Center, for his consulation and advice in this study.


  1. 1.
    van Noesel MM, Versteeg R (2004) Pediatric neuroblastomas: genetic and epigenetic ‘danse macabre’. Gene 325:1–15PubMedCrossRefGoogle Scholar
  2. 2.
    Bown N (2001) Neuroblastoma tumour genetics: clinical and biological aspects. J Clin Pathol 54(12):897–910PubMedGoogle Scholar
  3. 3.
    Linet MS, Ries LA, Smith MA, Tarone RE, Devesa SS (1999) Cancer surveillance series: recent trends in childhood cancer incidence and mortality in the united states. J Natl Cancer Inst 91(12):1051–1058PubMedCrossRefGoogle Scholar
  4. 4.
    Weinstein JL, Katzenstein HM, Cohn SL (2003) Advances in the diagnosis and treatment of neuroblastoma. Oncologist 8(3):278–292PubMedCrossRefGoogle Scholar
  5. 5.
    Gestblom C, Hoehner JC, Hedborg F, Sandstedt B, Pahlman S (1997) In vivo spontaneous neuronal to neuroendocrine lineage conversion in a subset of neuroblastomas. Am J Pathol 150(1):107–117PubMedGoogle Scholar
  6. 6.
    Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B et al (1999) The international neuroblastoma pathology classification (the shimada system). Cancer 86(2):364–372PubMedCrossRefGoogle Scholar
  7. 7.
    Lastowska M, Cullinane C, Variend S, Cotterill S, Bown N, O’Neill S et al (2001) Comprehensive genetic and histopathologic study reveals three types of neuroblastoma tumors. J Clin Oncol 19(12):3080–3090PubMedGoogle Scholar
  8. 8.
    Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK et al (1999) Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. children’s cancer group. N Engl J Med 341(16):1165–1173PubMedCrossRefGoogle Scholar
  9. 9.
    Norris MD, Bordow SB, Marshall GM, Haber PS, Cohn SL, Haber M (1996) Expression of the gene for multidrug-resistance-associated protein and outcome in patients with neuroblastoma. N Engl J Med 334(4):231–238PubMedCrossRefGoogle Scholar
  10. 10.
    Berthold F, Hero B (2000) Neuroblastoma: current drug therapy recommendations as part of the total treatment approach. Drugs 59(6):1261–1277PubMedCrossRefGoogle Scholar
  11. 11.
    Kushner BH, Cheung NK, Kramer K, Heller G, Jhanwar SC (1998) Neuroblastoma and treatment-related myelodysplasia/leukemia: the memorial sloan–kettering experience and a literature review. J Clin Oncol 16(12):3880–3889PubMedGoogle Scholar
  12. 12.
    Ludin A, Macklis RM (2000) Radiotherapy for pediatric genitourinary tumors. its role and long-term consequences. Urol Clin North Am 27(3):553–562PubMedCrossRefGoogle Scholar
  13. 13.
    Roarty JD, McLean IW, Zimmerman LE (1988) Incidence of second neoplasms in patients with bilateral retinoblastoma. Ophthalmology 95(11):1583–1587PubMedGoogle Scholar
  14. 14.
    Kushner BH, Cheung NK (2005) Neuroblastoma – from genetic profiles to clinical challenge. N Engl J Med 353(21):2215–2217PubMedCrossRefGoogle Scholar
  15. 15.
    Ordonez-Moran P, Larriba MJ, Pendas-Franco N, Aguilera O, Gonzalez-Sancho JM, Munoz A (2005) Vitamin D and cancer: an update of in vitro and in vivo data. Front Biosci 10:2723–2749PubMedCrossRefGoogle Scholar
  16. 16.
    Lam HY, Schnoes HK, DeLuca HF (1974) 1alpha-hydroxyvitamin D2: a potent synthetic analog of vitamin D2. Science 186(4168):1038–1040PubMedCrossRefGoogle Scholar
  17. 17.
    Sjoden G, Smith C, Lindgren U, DeLuca HF (1985) 1 alpha-hydroxyvitamin D2 is less toxic than 1 alpha-hydroxyvitamin D3 in the rat. Proc Soc Exp Biol Med 178(3):432–436PubMedGoogle Scholar
  18. 18.
    Albert DM, Kumar A, Strugnell SA, Darjatmoko SR, Lokken JM, Lindstrom MJ et al (2004) Effectiveness of 1alpha-hydroxyvitamin D2 in inhibiting tumor growth in a murine transgenic pigmented ocular tumor model. Arch Ophthalmol 122(9):1365–1369PubMedCrossRefGoogle Scholar
  19. 19.
    Albert DM, Kumar A, Strugnell SA, Darjatmoko SR, Lokken JM, Lindstrom MJ et al (2004) Effectiveness of vitamin D analogues in treating large tumors and during prolonged use in murine retinoblastoma models. Arch Ophthalmol 122(9):1357–1362PubMedCrossRefGoogle Scholar
  20. 20.
    Dawson DG, Gleiser J, Zimbric ML, Darjatmoko SR, Lindstrom MJ, Strugnell SA et al (2003) Toxicity and dose-response studies of 1-alpha hydroxyvitamin D2 in LH-beta-tag transgenic mice. Ophthalmology 110(4):835–839PubMedCrossRefGoogle Scholar
  21. 21.
    Grostern RJ, Bryar PJ, Zimbric ML, Darjatmoko SR, Lissauer BJ, Lindstrom MJ et al (2002) Toxicity and dose-response studies of 1alpha-hydroxyvitamin D2 in a retinoblastoma xenograft model. Arch Ophthalmol 120(5):607–612PubMedGoogle Scholar
  22. 22.
    Albert DM, Plum LA, Yang W, Marcet M, Lindstrom MJ, Clagett-Dame M et al (2005) Responsiveness of human retinoblastoma and neuroblastoma models to a non-calcemic 19-nor vitamin D analog. J Steroid Biochem Mol Biol 97(1–2):165–172PubMedCrossRefGoogle Scholar
  23. 23.
    Reddy CD, Patti R, Guttapalli A, Maris JM, Yanamandra N, Rachamallu A et al (2006) Anticancer effects of the novel 1alpha, 25-dihydroxyvitamin D3 hybrid analog QW1624F2-2 in human neuroblastoma. J Cell Biochem 97(1):198–206PubMedCrossRefGoogle Scholar
  24. 24.
    Gumireddy K, Ikegaki N, Phillips PC, Sutton LN, Reddy CD (2003) Effect of 20-epi-1alpha,25-dihydroxyvitamin D3 on the proliferation of human neuroblastoma: role of cell cycle regulators and the myc-Id2 pathway. Biochem Pharmacol 65(12):1943–1955PubMedCrossRefGoogle Scholar
  25. 25.
    Helson L, Helson C (1985) Human neuroblastoma cells and 13-cis-retinoic acid. J Neurooncol 3(1):39–41PubMedGoogle Scholar
  26. 26.
    Nagai J, Yazawa T, Okudela K, Kigasawa H, Kitamura H, Osaka H (2004) Retinoic acid induces neuroblastoma cell death by inhibiting proteasomal degradation of retinoic acid receptor alpha. Cancer Res 64(21):7910–7917PubMedCrossRefGoogle Scholar
  27. 27.
    Celli A, Treves C, Stio M (1999) Vitamin D receptor in SH-SY5Y human neuroblastoma cells and effect of 1,25-dihydroxyvitamin D3 on cellular proliferation. Neurochem Int 34(2):117–124PubMedCrossRefGoogle Scholar
  28. 28.
    Jaboin J, Kim CJ, Kaplan DR, Thiele CJ (2002) Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3’-kinase pathway. Cancer Res 62(22):6756–6763PubMedGoogle Scholar
  29. 29.
    PE applied biosystems (2001) ABI prism 7700 sequence detection system: Relative quatitation of gene expression.user bulletin #2: Rev B, 36 ppGoogle Scholar
  30. 30.
    Sabet SJ, Darjatmoko SR, Lindstrom MJ, Albert DM (1999) Antineoplastic effect and toxicity of 1,25-dihydroxy-16-ene-23-yne-vitamin D3 in athymic mice with Y-79 human retinoblastoma tumors. Arch Ophthalmol 117(3):365–370PubMedGoogle Scholar
  31. 31.
    Zinser GM, McEleney K, Welsh J (2003) Characterization of mammary tumor cell lines from wild type and vitamin D3 receptor knockout mice. Mol Cell Endocrinol 200(1–2):67–80PubMedCrossRefGoogle Scholar
  32. 32.
    Brown AJ (2001) Therapeutic uses of vitamin D analogues. Am J Kidney Dis 38(5 Suppl 5):S3–S19PubMedGoogle Scholar
  33. 33.
    Coburn JW, Maung HM, Elangovan L, Germain MJ, Lindberg JS, Sprague SM et al (2004) Doxercalciferol safely suppresses PTH levels in patients with secondary hyperparathyroidism associated with chronic kidney disease stages 3 and 4. Am J Kidney Dis 43(5):877–890PubMedCrossRefGoogle Scholar
  34. 34.
    Liu G, Wilding G, Staab MJ, Horvath D, Miller K, Dresen A et al (2003) Phase II study of 1alpha-hydroxyvitamin D(2) in the treatment of advanced androgen-independent prostate cancer. Clin Cancer Res 9(11):4077–4083PubMedGoogle Scholar
  35. 35.
    Khanna C, Jaboin JJ, Drakos E, Tsokos M, Thiele CJ (2002) Biologically relevant orthotopic neuroblastoma xenograft models: primary adrenal tumor growth and spontaneous distant metastasis. In Vivo 16(2):77–85PubMedGoogle Scholar
  36. 36.
    Albert DM, Marcus DM, Gallo JP, O’Brien JM (1992) The antineoplastic effect of vitamin D in transgenic mice with retinoblastoma. Invest Ophthalmol Vis Sci 33(8):2354–2364PubMedGoogle Scholar
  37. 37.
    Veenstra TD, Londowski JM, Windebank AJ, Brimijoin S, Kumar R (1997) Effects of 1,25-dihydroxyvitamin D3 on growth of mouse neuroblastoma cells. Brain Res Dev Brain Res 99(1):53–60PubMedCrossRefGoogle Scholar
  38. 38.
    Moore TB, Koeffler HP, Yamashiro JM, Wada RK (1996) Vitamin D3 analogs inhibit growth and induce differentiation in LA-N-5 human neuroblastoma cells. Clin Exp Metastasis 14(3):239–245PubMedGoogle Scholar
  39. 39.
    Audo I, Darjatmoko SR, Schlamp CL, Lokken JM, Lindstrom MJ, Albert DM et al (2003) Vitamin D analogues increase p53, p21, and apoptosis in a xenograft model of human retinoblastoma. Invest Ophthalmol Vis Sci 44(10):4192–4199PubMedCrossRefGoogle Scholar
  40. 40.
    Albert DM, Scheef EA, Wang S, Mehraein F, Darjatmoko SR, Sorenson CM et al (2007) Calcitriol is a potent inhibitor of retinal neovascularization. Invest Ophthalmol Vis Sci 48(5):2327–2334PubMedCrossRefGoogle Scholar
  41. 41.
    Chung I, Wong MK, Flynn G, Yu WD, Johnson CS, Trump DL (2006) Differential antiproliferative effects of calcitriol on tumor-derived and matrigel-derived endothelial cells. Cancer Res 66(17):8565–8573PubMedCrossRefGoogle Scholar
  42. 42.
    Bernardi RJ, Johnson CS, Modzelewski RA, Trump DL (2002) Antiproliferative effects of 1alpha,25-dihydroxyvitamin D(3) and vitamin D analogs on tumor-derived endothelial cells. Endocrinology 143(7):2508–2514PubMedCrossRefGoogle Scholar
  43. 43.
    Mantell DJ, Owens PE, Bundred NJ, Mawer EB, Canfield AE (2000) 1 alpha,25-dihydroxyvitamin D(3) inhibits angiogenesis in vitro and in vivo. Circ Res 87(3):214–220PubMedGoogle Scholar
  44. 44.
    Peng X, Jhaveri P, Hussain-Hakimjee EA, Mehta RG (2007) Overexpression of ER and VDR is not sufficient to make ER-negative MDA-MB231 breast cancer cells responsive to 1{alpha}-hydroxyvitamin D5. Carcinogenesis 28(5):1000–1007PubMedCrossRefGoogle Scholar
  45. 45.
    Abedin SA, Banwell CM, Colston KW, Carlberg C, Campbell MJ (2006) Epigenetic corruption of VDR signalling in malignancy. Anticancer Res 26(4A):2557–2566PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Paul R. van Ginkel
    • 1
  • William Yang
    • 1
  • Marcus M. Marcet
    • 1
  • Clement C. Chow
    • 1
  • Amol D. Kulkarni
    • 1
  • Soesiawati Darjatmoko
    • 1
  • Mary J. Lindstrom
    • 2
  • Janice Lokken
    • 1
  • Saswati Bhattacharya
    • 1
  • Daniel M. Albert
    • 1
    Email author
  1. 1.Department of Ophthalmology and Visual SciencesUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  2. 2.Department of BiostatisticsUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA

Personalised recommendations