Journal of Neuro-Oncology

, Volume 85, Issue 1, pp 39–47 | Cite as

Aberrant constitutive activation of nuclear factor κB in glioblastoma multiforme drives invasive phenotype

  • Baisakhi Raychaudhuri
  • Yulong Han
  • Tao Lu
  • Michael A. Vogelbaum
Lab. Investigation-human/animal tissue

Abstract

Several recent studies have shown that aberrant constitutive activation of nuclear factor kappaB (NF-κB) is present in a variety of cancers including gliomas. NF-κB is known to play important roles in the physiological regulation of diverse cellular processes such as inflammation, growth and immunity. In contrast, aberrant activation of this latent transcription factor promotes cancer cell migration, invasion and resistance to chemotherapy. Here we show by electro-mobility shift assay (EMSA) and immuno-staining that constitutive NF-κB activation is present in various malignant glioma cell lines as well as in primary cultures derived from tumor tissue. This activation was not serum dependent and it led to high IL-8 gene transcription and protein production. Over-expression of an I-κB super-repressor (I-κB SR) transgene completely blocked constitutive NF-κB activation, nuclear localization and transcription of some but not all NF-κB regulated genes indicating that NF-κB signaling in glioma cells is I-κB dependent. Surprisingly, over-expression of IκBSR did not have any effect on the transcription levels of anti-apoptotic genes in these glioma cultures and cell lines. Down-regulation of NF-κB activation reduced invasion of glioma cells through matrigel. Collectively these data suggest that aberrant constitutive activation of NF-κB in glioblastoma cells promotes their invasive phenotype. Interruption of this aberrant NF-κB activity may help reduce the spread of this infiltrative tumor.

Keywords

NF-κB Glioma Invasion Transcription factor IL-8 

References

  1. 1.
    Sawaya R, Ligon BL, Bindal AK, Bindal RK, Hess KR (1996) Surgical treatment of metastatic brain tumors. J Neurooncol 27:269–277PubMedCrossRefGoogle Scholar
  2. 2.
    Baldwin AS Jr (2001) Series introduction: the transcription factor NF-kappaB, human disease. J Clin Invest 107:3–6PubMedCrossRefGoogle Scholar
  3. 3.
    Higgins KA, Perez JR, Coleman TA, Dorshkind K, McComas WA, Sarmiento UM, Rosen CA, Narayanan R (1993) Antisense inhibition of the p65 subunit of NF-kappa B blocks tumorigenicity and causes tumor regression. Proc Natl Acad Sci USA 90:9901–9915PubMedCrossRefGoogle Scholar
  4. 4.
    Beg AA, Baltimore D (1996) An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 274:782–784PubMedCrossRefGoogle Scholar
  5. 5.
    Gilmore TD, Koedood M, Piffat KA, White DW (1996) Rel/NF-kappaB/IkappaB proteins and cancer. Oncogene 13:1367–1378PubMedGoogle Scholar
  6. 6.
    Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM (1996) Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 274:787–789PubMedCrossRefGoogle Scholar
  7. 7.
    Wang CY, Mayo MW, Baldwin AS Jr (1996) TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 274:784–787PubMedCrossRefGoogle Scholar
  8. 8.
    Duffey DC, Chen Z, Dong G, Ondrey FG, Wolf JS, Brown K, Siebenlist U, Van Waes C (1999) Expression of a dominant-negative mutant inhibitor-kappaBalpha of nuclear factor-kappaB in human head and neck squamous cell carcinoma inhibits survival, proinflammatory cytokine expression, and tumor growth in vivo. Cancer Res 59:3468–3474PubMedGoogle Scholar
  9. 9.
    Yoshida A, Yoshida S, Ishibashi T, Kuwano M, Inomata H (1999) Suppression of retinal neovascularization by the NF-kappaB inhibitor pyrrolidine dithiocarbamate in mice. Invest Ophthalmol Vis Sci 40:1624–1629PubMedGoogle Scholar
  10. 10.
    Huang S, DeGuzman A, Bucana CD, Fidler IJ (2000) Nuclear factor-kappaB activity correlates with growth, angiogenesis, and metastasis of human melanoma cells in nude mice. Clin Cancer Res 6:2573–2581PubMedGoogle Scholar
  11. 11.
    Aggarwal BB Nuclear factor-kappaB: the enemy within (2004) Cancer Cell 6:203–208Google Scholar
  12. 12.
    Ritchie CK, Giordano A, Khalili K (2000) Integrin involvement in glioblastoma multiforme: possible regulation by NF-kappaB. J Cell Physiol 184:214–221PubMedCrossRefGoogle Scholar
  13. 13.
    Bjorklund M, Koivunen E (2005) Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta 1755:37–69PubMedGoogle Scholar
  14. 14.
    Griffin JD (2001) Leukemia stem cells and constitutive activation of NK-kappaB. Blood 6:203–208Google Scholar
  15. 15.
    Feinman R, Koury J, Thames M, Barlogie B, Epstein J, Siegel DS (1999) Role of NF-kappaB in the rescue of multiple myeloma cells from glucocorticoid-induced apoptosis by bcl-2. Blood 93:3044–3052PubMedGoogle Scholar
  16. 16.
    Kordes U, Krappmann D, Heissmeyer V, Ludwig WD, Scheidereit C (2000) Transcription factor NF-kappaB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia 14:399–402PubMedCrossRefGoogle Scholar
  17. 17.
    Baron F, Turhan AG, Giron-Michel J, Azzarone B, Bentires-Alj M, Bours V, Bourhis JH, Chouaib S, Caignard A (2002) Leukemic target susceptibility to natural killer cytotoxicity: relationship with BCR-ABL expression. Blood 99:2107–2113PubMedCrossRefGoogle Scholar
  18. 18.
    Palayoor ST, Youmell MY, Calderwood SK, Coleman CN, Price BD (1999) Constitutive activation of IkappaB kinase alpha and NF-kappaB in prostate cancer cells is inhibited by ibuprofen. Oncogene 18:7389–7394PubMedCrossRefGoogle Scholar
  19. 19.
    Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet RJ Jr, Sledge GW Jr (1997) Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 17:3629–3639PubMedGoogle Scholar
  20. 20.
    Bian X, Opipari AW Jr, Ratanaproeksa AB, Boitano AE, Lucas PC, Castle VP (2002) Constitutively active NFkappa B is required for the survival of S-type neuroblastoma. J Biol Chem 277:42144–42150PubMedCrossRefGoogle Scholar
  21. 21.
    Nagai S, Washiyama K, Kurimoto M, Takaku A, Endo S, Kumanishi T (2002) Aberrant nuclear factor-kappaB activity and its participation in the growth of human malignant astrocytoma. J Neurosurg 96:909–917PubMedCrossRefGoogle Scholar
  22. 22.
    Gill JS, Zhu X, Moore MJ, Lu L, Yaszemski MJ, Windebank AJ (2002) Effects of NFkappaB decoy oligonucleotides released from biodegradable polymer microparticles on a glioblastoma cell line. Biomaterials 23:2773–2781PubMedCrossRefGoogle Scholar
  23. 23.
    Hata N, Yoshimoto K, Yokoyama N, Mizoguchi M, Shono T, Guan Y, Tahira T, Kukita Y, Higasa K, Nagata S, Iwaki T, Sasaki T, Hayashi K (2006) Allelic losses of chromosome 10 in glioma tissues detected by quantitative single-strand conformation polymorphism analysis. Clin Chem 52:370–378PubMedCrossRefGoogle Scholar
  24. 24.
    Sizemore N, Lerner N, Dombrowski N, Sakurai H, Stark GR (2002) Distinct roles of the Ikappa B kinase alpha and beta subunits in liberating nuclear factor kappa B (NF-kappa B) from Ikappa B and in phosphorylating the p65 subunit of NF-kappa B. J Biol Chem 277:3863–3869PubMedCrossRefGoogle Scholar
  25. 25.
    Wolf S, Chen Z, Dong G, Sunwoo JB, Bancroft CC, Capo DE, Yeh NT, Mukaida N, Van Waes C (2001) IL (interleukin)-lalpha promotes nuclear factor-kappaB and AP-1-induced IL-8 expression, cell survival, and proliferation in head and neck squamous cell carcinomas. Clin Cancer Res 7(6):1812–1820PubMedGoogle Scholar
  26. 26.
    Arlt A, Vorndamm J, Muerkoster S, Yu H, Schmidt WE, Folsch UR, Schafer H (2002) Autocrine production of interleukin 1beta confers constitutive nuclear factor kappaB activity and chemoresistance in pancreatic carcinoma cell lines. Cancer Res 62:910–916PubMedGoogle Scholar
  27. 27.
    Coward WR, Okayama Y, Sagara H, Wilson SJ, Holgate ST, Church MK (2002) NF-kappa B and TNF-alpha: a positive autocrine loop in human lung mast cells? J Immunol 169:5287–5293PubMedGoogle Scholar
  28. 28.
    Lu T, Strak G (2004) Cytokine overexpression and constitutive NF-kappa B in cancer. Cell Cycle 3:1114–1117PubMedGoogle Scholar
  29. 29.
    Wakabayashi K, Kambe F, Cao X, Murakami R, Mitsuyama H, Nagaya T, Saito K, Yoshida J, Seo H (2004) Inhibitory effects of cyclosporin A on calcium mobilization-dependent interleukin-8 expression and invasive potential of human glioblastoma U251MG cells. Oncogene 23:6924–6932PubMedCrossRefGoogle Scholar
  30. 30.
    Mahe Y, Mukaida N, Kuno K, Akiyama M, Ikeda N, Matsushima K, Murakami S (1991) Hepatitis B virus X protein transactivates human interleukin-8 gene through acting on nuclear factor kB and CCAAT/enhancer-binding protein-like cis-elements. J Biol Chem 266:13759–13763PubMedGoogle Scholar
  31. 31.
    Matsusaka T, Fujikawa K, Nishio Y, Mukaida N, Matsushima K, Kishimoto T, Akira S (1993) Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci USA 90:10193–10197PubMedCrossRefGoogle Scholar
  32. 32.
    Lefranc F, Brotchi J, Kiss R (2005) Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol 23:2411–2422PubMedCrossRefGoogle Scholar
  33. 33.
    Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3:489–501PubMedCrossRefGoogle Scholar
  34. 34.
    Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-oncol 7:122–133PubMedCrossRefGoogle Scholar
  35. 35.
    Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ (2001) Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 20:4188–4197PubMedCrossRefGoogle Scholar
  36. 36.
    Fujioka S, Sclabas GM, Schmidt C, Frederick WA, Dong QG, Abbruzzese JL, Evans DB, Baker C, Chiao PJ (2003) Function of nuclear factor kappaB in pancreatic cancer metastasis. Clin Cancer Res 9:346–354PubMedGoogle Scholar
  37. 37.
    Watanabe H, Iwase M, Ohashi M, Nagumo M (2002) Role of interleukin-8 secreted from human oral squamous cell carcinoma cell lines. Oral Oncol 38:670–679PubMedCrossRefGoogle Scholar
  38. 38.
    Lin Y, Huang R, Chen L, Li S, Shi Q, Jordan C, Huang RP (2004) Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays. Int J Cancer 109:507–515PubMedCrossRefGoogle Scholar
  39. 39.
    Robe PA, Bentires-Alj M, Bonif M, Rogister B, Deprez M, Haddada H, Khac MT, Jolois O, Erkmen K, Merville MP, Black PM, Bours V (2004) In vitro and in vivo activity of the nuclear factor-kappaB inhibitor sulfasalazine in human glioblastomas. Clin Cancer Res 10:5595–5603PubMedCrossRefGoogle Scholar
  40. 40.
    Lamszus K, Brockmann MA, Eckerich C, Bohlen P, May C, Mangold U, Fillbrandt R, Westphal M (2005) Inhibition of glioblastoma angiogenesis and invasion by combined treatments directed against vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and vascular endothelial-cadherin. Clin Cancer Res 11(13):4934–4940PubMedCrossRefGoogle Scholar
  41. 41.
    Hu B, Jarzynka MJ, Guo P, Imanishi Y, Schlaepfer DD, Cheng SY (2006) Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Res 66(2):775–783 PubMedCrossRefGoogle Scholar
  42. 42.
    Mayes DA, Hu Y, Teng Y, Siegel E, Wu X, Panda K, Tan F, Yung WK, Zhou YH (2006) PAX6 suppresses the invasiveness of glioblastoma cells and the expression of the matrix metalloproteinase-2 gene. Cancer Res 66(20):9809–9817 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Baisakhi Raychaudhuri
    • 1
  • Yulong Han
    • 1
  • Tao Lu
    • 2
  • Michael A. Vogelbaum
    • 1
  1. 1.Brain Tumor Institute and Taussig Cancer CenterCleveland ClinicClevelandUSA
  2. 2.Department of Molecular GeneticsCleveland ClinicClevelandUSA

Personalised recommendations