Journal of Neuro-Oncology

, Volume 85, Issue 1, pp 11–24 | Cite as

Microarray analysis of gliomas reveals chromosomal position-associated gene expression patterns and identifies potential immunotherapy targets

  • Oscar Persson
  • Morten Krogh
  • Lao H. Saal
  • Elisabet Englund
  • Jian Liu
  • Ramon Parsons
  • Nils Mandahl
  • Åke Borg
  • Bengt Widegren
  • Leif G. Salford
Lab. Investigation - human/animal tissue

Abstract

Gliomas are among the most aggressive malignant tumors and the most refractory to therapy, in part due to the propensity for malignant cells to disseminate diffusely throughout the brain. Here, we have used 27 K cDNA microarrays to investigate global gene expression changes between normal brain and high-grade glioma (glioblastoma multiforme) to try and better understand gliomagenesis and to identify new therapeutic targets. We have also included smaller groups of grade II and grade III tumors of mixed astrocytic and oligodendroglial origin as comparison. We found that the expression of hundreds of genes was significantly correlated to each group, and employed a naïve Bayesian classifier with leave-one-out cross-validation to accurately classify the samples. We developed a novel algorithm to analyze the gene expression data from the perspective of chromosomal position, and identified distinct regions of the genome that displayed coordinated expression patterns that correlated significantly to tumor grade. The regions identified corresponded to previously known genetic copy number changes in glioma (e.g. 10q23, 10q25, 7q, 7p) as well as regions not previously associated significantly with glioma (e.g. 1p13, 6p22). Furthermore, to enrich for more suitable targets for therapy, we took a bioinformatics approach and annotated our signatures with two published datasets that identified membrane/secreted genes from cytosolic genes. The resulting focused list of 31 genes included interesting novel potential targets as well as several proteins already being investigated for immunotherapy (e.g. CD44 and tenascin-C). Software for the chromosome analysis was developed and is freely available at http://base.thep.lu.se.

Keywords

Glioma Microarray Chromosome Therapeutic target 

Supplementary material

References

  1. 1.
    Parkin DM, Whelan SL, Ferlay J, Teppo L, Thomas DB (2002) Cancer incidence in five continents. International Agency for Research on Cancer, Lyon, FranceGoogle Scholar
  2. 2.
    Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol (Berl) 109:93–108CrossRefGoogle Scholar
  3. 3.
    Salford LG, Brun A, Nirfalk S (1988) Ten-year survival among patients with supratentorial astrocytomas grade III and IV. J Neurosurg 69:506–509PubMedCrossRefGoogle Scholar
  4. 4.
    Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15:1311–1333PubMedCrossRefGoogle Scholar
  5. 5.
    Salford L, Ask E, Siesjo P (2005) Immunization with autologous glioma cells transfected with IFN-g gene significantly prolongs survival in GBM-patients older than 50 years. Neuro-Oncology 7:370Google Scholar
  6. 6.
    Akabani G, Reardon DA, Coleman RE, Wong TZ, Metzler SD, Bowsher JE, Barboriak DP, Provenzale JM, Greer KL, DeLong D, Friedman HS, Friedman AH, Zhao XG, Pegram CN, McLendon RE, Bigner DD, Zalutsky MR (2005) Dosimetry and radiographic analysis of 131I-labeled anti-tenascin 81C6 murine monoclonal antibody in newly diagnosed patients with malignant gliomas: a phase II study. J Nucl Med 46:1042–1051PubMedGoogle Scholar
  7. 7.
    Haas-Kogan DA, Prados MD, Tihan T, Eberhard DA, Jelluma N, Arvold ND, Baumber R, Lamborn KR, Kapadia A, Malec M, Berger MS, Stokoe D (2005) Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J Natl Cancer Inst 97:880–887PubMedCrossRefGoogle Scholar
  8. 8.
    Sampson JH, Akabani G, Archer GE, Bigner DD, Berger MS, Friedman AH, Friedman HS, Herndon JE 2nd, Kunwar S, Marcus S, McLendon RE, Paolino A, Penne K, Provenzale J, Quinn J, Reardon DA, Rich J, Stenzel T, Tourt-Uhlig S, Wikstrand C, Wong T, Williams R, Yuan F, Zalutsky MR, Pastan I (2003) Progress report of a Phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J Neurooncol 65:27–35PubMedCrossRefGoogle Scholar
  9. 9.
    Hoelzinger DB, Mariani L, Weis J, Woyke T, Berens TJ, McDonough WS, Sloan A, Coons SW, Berens ME (2005) Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia 7:7–16PubMedCrossRefGoogle Scholar
  10. 10.
    Mischel PS, Cloughesy TF, Nelson SF (2004) DNA-microarray analysis of brain cancer: molecular classification for therapy. Nat Rev Neurosci 5:782–792PubMedCrossRefGoogle Scholar
  11. 11.
    Khan J, Saal LH, Bittner ML, Jiang Y, Gooden GC, Glatfelter AA, Meltzer PS (2002) Gene expression profiling in cancer using cDNA microarrays. Methods Mol Med 68:205–222PubMedGoogle Scholar
  12. 12.
    Saal LH, Troein C, Vallon-Christersson J, Gruvberger S, Borg A, Peterson C (2002) BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data. Genome Biol 3:SOFTWARE0003PubMedCrossRefGoogle Scholar
  13. 13.
    Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836CrossRefGoogle Scholar
  14. 14.
    Sammon JW (1969) A nonlinear mapping for data structure analysis. IEEE Trans Comput 18:401–409CrossRefGoogle Scholar
  15. 15.
    Ihaka R, Gentleman R (1996) A language for data analysis and graphics. J Comput Graph Stat 5:299–314CrossRefGoogle Scholar
  16. 16.
    Khan J, Simon R, Bittner M, Chen Y, Leighton SB, Pohida T, Smith PD, Jiang Y, Gooden GC, Trent JM, Meltzer PS (1998) Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res 58:5009–5013PubMedGoogle Scholar
  17. 17.
    Ringner M, Veerla S, Andersson S, Staaf J, Hakkinen J (2004) ACID: a database for microarray clone information. Bioinformatics 20:2305–2306PubMedCrossRefGoogle Scholar
  18. 18.
    Diehn M, Eisen MB, Botstein D, Brown PO (2000) Large-scale identification of secreted and membrane-associated gene products using DNA microarrays. Nat Genet 25:58–62PubMedCrossRefGoogle Scholar
  19. 19.
    Stitziel NO, Mar BG, Liang J, Westbrook CA (2004) Membrane-associated and secreted genes in breast cancer. Cancer Res 64:8682–8687PubMedCrossRefGoogle Scholar
  20. 20.
    Bouton CM, Pevsner J (2000) DRAGON: Database Referencing of Array Genes Online. Bioinformatics 16:1038–1039PubMedCrossRefGoogle Scholar
  21. 21.
    Godard S, Getz G, Delorenzi M, Farmer P, Kobayashi H, Desbaillets I, Nozaki M, Diserens AC, Hamou MF, Dietrich PY, Regli L, Janzer RC, Bucher P, Stupp R, de Tribolet N, Domany E, Hegi ME (2003) Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res 63:6613–6625PubMedGoogle Scholar
  22. 22.
    Rickman DS, Bobek MP, Misek DE, Kuick R, Blaivas M, Kurnit DM, Taylor J, Hanash SM (2001) Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res 61:6885–6891PubMedGoogle Scholar
  23. 23.
    Freije WA, Castro-Vargas FE, Fang Z, Horvath S, Cloughesy T, Liau LM, Mischel PS, Nelson SF (2004) Gene expression profiling of gliomas strongly predicts survival. Cancer Res 64:6503–6510PubMedCrossRefGoogle Scholar
  24. 24.
    Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd C, Pohl U, Hartmann C, McLaughlin ME, Batchelor TT, Black PM, von Deimling A, Pomeroy SL, Golub TR, Louis DN (2003) Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 63:1602–1607PubMedGoogle Scholar
  25. 25.
    Awad IA, Rees CA, Hernandez-Boussard T, Ball CA, Sherlock G (2004) Caryoscope: an Open Source Java application for viewing microarray data in a genomic context. BMC Bioinformatics 5:151PubMedCrossRefGoogle Scholar
  26. 26.
    Myers CL, Dunham MJ, Kung SY, Troyanskaya OG (2004) Accurate detection of aneuploidies in array CGH and gene expression microarray data. Bioinformatics 20:3533–3543PubMedCrossRefGoogle Scholar
  27. 27.
    Toedling J, Schmeier S, Heinig M, Georgi B, Roepcke S (2005) MACAT-microarray chromosome analysis tool. Bioinformatics 21:2112–2113PubMedCrossRefGoogle Scholar
  28. 28.
    Yi Y, Mirosevich J, Shyr Y, Matusik R, George AL Jr (2005) Coupled analysis of gene expression and chromosomal location. Genomics 85:401–412PubMedCrossRefGoogle Scholar
  29. 29.
    Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E, Andersson AC, Angelidou P, Asplund A, Asplund C, Berglund L, Bergstrom K, Brumer H, Cerjan D, Ekstrom M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Bjorklund MG, Gumbel K, Halimi A, Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Odling J, Oksvold P, Olsson I, Oster E, Ottosson J, Paavilainen L, Persson A, Rimini R, Rockberg J, Runeson M, Sivertsson A, Skollermo A, Steen J, Stenvall M, Sterky F, Stromberg S, Sundberg M, Tegel H, Tourle S, Wahlund E, Walden A, Wan J, Wernerus H, Westberg J, Wester K, Wrethagen U, Xu LL, Hober S, Ponten F (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4:1920–1932PubMedCrossRefGoogle Scholar
  30. 30.
    Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG (2004) Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36:1046–1069PubMedCrossRefGoogle Scholar
  31. 31.
    Kang LC, Dunphy CH (2006) Immunoreactivity of MIC2 (CD99) and terminal deoxynucleotidyl transferase in bone marrow clot and core specimens of acute myeloid leukemias and myelodysplastic syndromes. Arch Pathol Lab Med 130:153–157PubMedGoogle Scholar
  32. 32.
    Fuller GN, Rhee CH, Hess KR, Caskey LS, Wang R, Bruner JM, Yung WK, Zhang W (1999) Reactivation of insulin-like growth factor binding protein 2 expression in glioblastoma multiforme: a revelation by parallel gene expression profiling. Cancer Res 59:4228–4232PubMedGoogle Scholar
  33. 33.
    Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG (2005) Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-oncology 7:134–153PubMedCrossRefGoogle Scholar
  34. 34.
    Tso CL, Freije WA, Day A, Chen Z, Merriman B, Perlina A, Lee Y, Dia EQ, Yoshimoto K, Mischel PS, Liau LM, Cloughesy TF, Nelson SF (2006) Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer Res 66:159–167PubMedCrossRefGoogle Scholar
  35. 35.
    Kleihues P, Cavenee WK (2000) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, FranceGoogle Scholar
  36. 36.
    Fritz B, Schubert F, Wrobel G, Schwaenen C, Wessendorf S, Nessling M, Korz C, Rieker RJ, Montgomery K, Kucherlapati R, Mechtersheimer G, Eils R, Joos S, Lichter P (2002) Microarray-based copy number and expression profiling in dedifferentiated and pleomorphic liposarcoma. Cancer Res 62:2993–2998PubMedGoogle Scholar
  37. 37.
    Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF, Jeffrey SS, Botstein D, Brown PO (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 23:41–46PubMedCrossRefGoogle Scholar
  38. 38.
    Pollack JR, Sorlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE, Tibshirani R, Botstein D, Borresen-Dale AL, Brown PO (2002) Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci U S A 99:12963–12968PubMedCrossRefGoogle Scholar
  39. 39.
    Koochekpour S, Jeffers M, Rulong S, Taylor G, Klineberg E, Hudson EA, Resau JH, Vande Woude GF (1997) Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 57:5391–5398PubMedGoogle Scholar
  40. 40.
    Abulrob A, Giuseppin S, Andrade MF, McDermid A, Moreno M, Stanimirovic D (2004) Interactions of EGFR and caveolin-1 in human glioblastoma cells: evidence that tyrosine phosphorylation regulates EGFR association with caveolae. Oncogene 23:6967–6979PubMedCrossRefGoogle Scholar
  41. 41.
    Katoh M (2003) WNT2 and human gastrointestinal cancer (review). Int J Mol Med 12:811–816PubMedGoogle Scholar
  42. 42.
    Reifenberger G, Collins VP (2004) Pathology and molecular genetics of astrocytic gliomas. J Mol Med 82:656–670PubMedCrossRefGoogle Scholar
  43. 43.
    Friese MA, Steinle A, Weller M (2004) The innate immune response in the central nervous system and its role in glioma immune surveillance. Onkologie 27:487–491PubMedCrossRefGoogle Scholar
  44. 44.
    Varla-Leftherioti M (2004) Role of a KIR/HLA-C allorecognition system in pregnancy. J Reprod Immunol 62:19–27PubMedCrossRefGoogle Scholar
  45. 45.
    Wischhusen J, Friese MA, Mittelbronn M, Meyermann R, Weller M (2005) HLA-E protects glioma cells from NKG2D-mediated immune responses in vitro: implications for immune escape in vivo. J Neuropathol Exp Neurol 64:523–528PubMedGoogle Scholar
  46. 46.
    Bigner SH, Mark J, Burger PC, Mahaley MS Jr, Bullard DE, Muhlbaier LH, Bigner DD (1988) Specific chromosomal abnormalities in malignant human gliomas. Cancer Res 48:405–411PubMedGoogle Scholar
  47. 47.
    James CD, Carlbom E, Dumanski JP, Hansen M, Nordenskjold M, Collins VP, Cavenee WK (1988) Clonal genomic alterations in glioma malignancy stages. Cancer Res 48:5546–5551PubMedGoogle Scholar
  48. 48.
    Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947PubMedCrossRefGoogle Scholar
  49. 49.
    Hirose Y, Aldape KD, Chang S, Lamborn K, Berger MS, Feuerstein BG (2003) Grade II astrocytomas are subgrouped by chromosome aberrations. Cancer Genet Cytogenet 142:1–7PubMedCrossRefGoogle Scholar
  50. 50.
    Sampson JH, Archer GE, Ashley DM, Fuchs HE, Hale LP, Dranoff G, Bigner DD (1996) Subcutaneous vaccination with irradiated, cytokine-producing tumor cells stimulates CD8+ cell-mediated immunity against tumors located in the “immunologically privileged” central nervous system. Proc Natl Acad Sci U S A 93:10399–10404PubMedCrossRefGoogle Scholar
  51. 51.
    Steiner HH, Bonsanto MM, Beckhove P, Brysch M, Geletneky K, Ahmadi R, Schuele-Freyer R, Kremer P, Ranaie G, Matejic D, Bauer H, Kiessling M, Kunze S, Schirrmacher V, Herold-Mende C (2004) Antitumor vaccination of patients with glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical benefit. J Clin Oncol 22:4272–4281PubMedCrossRefGoogle Scholar
  52. 52.
    Gunia S, Hussein S, Radu DL, Putz KM, Breyer R, Hecker H, Samii M, Walter GF, Stan AC (1999) CD44s-targeted treatment with monoclonal antibody blocks intracerebral invasion and growth of 9L gliosarcoma. Clin Exp Metastasis 17:221–230PubMedCrossRefGoogle Scholar
  53. 53.
    Adamsky K, Schilling J, Garwood J, Faissner A, Peles E (2001) Glial tumor cell adhesion is mediated by binding of the FNIII domain of receptor protein tyrosine phosphatase beta (RPTPbeta) to tenascin C. Oncogene 20:609–618PubMedCrossRefGoogle Scholar
  54. 54.
    Levy JB, Canoll PD, Silvennoinen O, Barnea G, Morse B, Honegger AM, Huang JT, Cannizzaro LA, Park SH, Druck T et al (1993) The cloning of a receptor-type protein tyrosine phosphatase expressed in the central nervous system. J Biol Chem 268:10573–10581PubMedGoogle Scholar
  55. 55.
    Muller S, Kunkel P, Lamszus K, Ulbricht U, Lorente GA, Nelson AM, von Schack D, Chin DJ, Lohr SC, Westphal M, Melcher T (2003) A role for receptor tyrosine phosphatase zeta in glioma cell migration. Oncogene 22:6661–6668PubMedCrossRefGoogle Scholar
  56. 56.
    Valenzuela SM, Mazzanti M, Tonini R, Qiu MR, Warton K, Musgrove EA, Campbell TJ, Breit SN (2000) The nuclear chloride ion channel NCC27 is involved in regulation of the cell cycle. J Physiol 529(3):541–552PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Oscar Persson
    • 1
  • Morten Krogh
    • 2
  • Lao H. Saal
    • 3
    • 7
  • Elisabet Englund
    • 4
  • Jian Liu
    • 3
  • Ramon Parsons
    • 7
    • 8
  • Nils Mandahl
    • 5
  • Åke Borg
    • 3
  • Bengt Widegren
    • 1
    • 6
  • Leif G. Salford
    • 1
  1. 1.Department of Neurosurgery, The Rausing LaboratoryLund UniversityLundSweden
  2. 2.Department of Theoretical PhysicsLund UniversityLundSweden
  3. 3.Department of OncologyLund UniversityLundSweden
  4. 4.Department of PathologyLund UniversityLundSweden
  5. 5.Department of Clinical GeneticsLund UniversityLundSweden
  6. 6.Division of Tumor ImmunologyLund UniversityLundSweden
  7. 7.Institute for Cancer Genetics, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA
  8. 8.Departments of Pathology and Medicine, Herbert Irving Comprehensive Cancer Center, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations