Journal of Neuro-Oncology

, Volume 82, Issue 2, pp 141–150 | Cite as

Expression of VEGFR3 in glioma endothelium correlates with tumor grade

  • S. J. Grau
  • F. Trillsch
  • J. Herms
  • N. Thon
  • P. J. Nelson
  • J. -C. Tonn
  • R. Goldbrunner
Original Paper

Abstract

Angiogenic processes are regulated by vascular endothelial growth factors (VEGFs) and their receptors VEGFR1 (Flt-1), 2 (Flk-1) and 3 (Flt-4). While VEGFR2 is thought to play a central role in tumor angiogenesis, anti-angiogenic therapies targeting VEGFR2 in glioma models can show escape phenomena with secondary onset of angiogenesis. The purpose of this study was to find explanations for these processes by searching for alternative pathways regulating glioma angiogenesis and reveal a correlation with tumor grade. Thus, VEGFR3, which is not expressed in normal brain, and its ligands VEGF-C and -D, were assessed in high grade (WHO°IV, glioblastomas, GBM) and low grade gliomas [WHO°II astrocytomas (AII)]. In all GBM, a strong protein expression of VEGFR3 was found on tumor endothelium, VEGF-C and -D expression was found on numerous cells in areas of high vascularization. On RNA level, a significant up-regulation of VEGFR3 was detected in GBM compared to AII and non-neoplastic brain. In AII, only very moderate VEGFR3, VEGF-C and -D expression was found on protein and RNA level indicating a correlation of VEGFR3 expression with tumor grade. VEGFR3 signal in both grades was found predominantly on endothelial cells, confirmed by VEGFR3 expression on isolated CD31 positive cells and the expression of various endothelial markers on VEGFR3-positive cells isolated from GBM. The demonstration of a complete angiogenic signaling system that is dependent on tumor grade may influence the traditional paradigm of glioma angiogenesis and may provide a basis for more effective anti-angiogenic treatment strategies.

Keywords

Angiogenesis Vascular endothelial growth factor receptor Glioma Glioblastoma lymphangiogenesis 

Notes

Acknowledgments

The authors want to thank Stefanie Lange for her practical help with cell culture, Anke Mojaat for expert assistance with TaqMan analysis and appreciate the work of Christoph Barth in assembling the figures. Work was supported in part by DFG grant NE 648/2-1 and SFB 571 to P.J.N.

References

  1. 1.
    Bloor CM (2005) Angiogenesis during exercise and training. Angiogenesis 8:263–271PubMedCrossRefGoogle Scholar
  2. 2.
    Breier G (2000) Angiogenesis in embryonic development—a review. Placenta 21(Suppl. A):S11–S15PubMedCrossRefGoogle Scholar
  3. 3.
    Ferrara N (2000) Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res 55:15–35 discussion 35–36PubMedGoogle Scholar
  4. 4.
    Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK (2001) Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res 61:6020–6024PubMedGoogle Scholar
  5. 5.
    Ng YS, Krilleke D, Shima DT (2006) VEGF function in vascular pathogenesis. Exp Cell Res 312: 527–537PubMedCrossRefGoogle Scholar
  6. 6.
    Frelin C, Ladoux A, D’angelo G (2000) Vascular endothelial growth factors and angiogenesis. Ann Endocrinol (Paris) 61:70–74Google Scholar
  7. 7.
    Jia H, Bagherzadeh A, Bicknell R, Duchen MR, Liu D, Zachary I (2004) Vascular endothelial growth factor (VEGF)-D and VEGF-A differentially regulate KDR-mediated signaling and biological function in vascular endothelial cells. J Biol Chem 20(279):36148–36157CrossRefGoogle Scholar
  8. 8.
    Ferrara N, Hillan KJ, Novotny W (2005) Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 333:328–335PubMedCrossRefGoogle Scholar
  9. 9.
    Kirsch M, Schackert G, Black PM (2000) Anti-angiogenic treatment strategies for malignant brain tumors. J Neurooncol 50:149–163PubMedCrossRefGoogle Scholar
  10. 10.
    Kubo K, Shimizu T, Ohyama S, Murooka H, Iwai A, Nakamura K, Hasegawa K, Kobayashi Y, Takahashi N, Takahashi K, Kato S, Izawa T, Isoe T (2005) Novel potent orally active selective VEGFR-2 tyrosine kinase inhibitors: synthesis, structure–activity relationships, and antitumor activities of N-phenyl-N’-{4-(4-quinolyloxy)phenyl}ureas. J Med Chem 48:1359–1366PubMedCrossRefGoogle Scholar
  11. 11.
    Midgley R, Kerr D (2005) Bevacizumab—current status and future directions. Ann Oncol 16:999–1004PubMedCrossRefGoogle Scholar
  12. 12.
    Rosen LS (2005) VEGF-targeted therapy: therapeutic potential and recent advances. Oncologist 10:382–391PubMedCrossRefGoogle Scholar
  13. 13.
    Salesi N, Bossone G, Veltri E, Di Cocco B, Marolla P, Pacetti U, Larosa G, Muni R, Vecchione A (2005) Clinical experience with bevacizumab in colorectal cancer. Anticancer Res 25:3619–3623PubMedGoogle Scholar
  14. 14.
    Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E, Munn LL, Jain RK (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563PubMedGoogle Scholar
  15. 15.
    Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64:3731–3736PubMedCrossRefGoogle Scholar
  16. 16.
    Iljin K, Karkkainen MJ, Lawrence EC, Kimak MA, Uutela M, Taipale J, Pajusola K, Alhonen L, Halmekyto M, Finegold DN, Ferrell RE, Alitalo K (2001) VEGFR3 gene structure, regulatory region, and sequence polymorphisms. FASEB J 15:1028–1036PubMedCrossRefGoogle Scholar
  17. 17.
    Witmer AN, Dai J, Weich HA, Vrensen GF, Schlingemann RO (2002) Expression of vascular endothelial growth factor receptors 1, 2, and 3 in quiescent endothelia. J Histochem Cytochem 50:767–777PubMedGoogle Scholar
  18. 18.
    Witmer AN, van Blijswijk BC, Dai J, Hofman P, Partanen TA, Vrensen GF, Schlingemann RO (2001) VEGFR-3 in adult angiogenesis. J Pathol 195:490–497PubMedCrossRefGoogle Scholar
  19. 19.
    Akagi K, Ikeda Y, Miyazaki M, Abe T, Kinoshita J, Maehara Y, Sugimachi K (2000) Vascular endothelial growth factor-C (VEGF-C) expression in human colorectal cancer tissues. Br J Cancer 83:887–891PubMedCrossRefGoogle Scholar
  20. 20.
    Alitalo K, Carmeliet P (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1:219–227PubMedCrossRefGoogle Scholar
  21. 21.
    Amioka T, Kitadai Y, Tanaka S, Haruma K, Yoshihara M, Yasui W, Chayama K (2002) Vascular endothelial growth factor-C expression predicts lymph node metastasis of human gastric carcinomas invading the submucosa. Eur J Cancer 38:1413–1419PubMedCrossRefGoogle Scholar
  22. 22.
    Bando H, Brokelmann M, Toi M, Alitalo K, Sleeman JP, Sipos B, Grone HJ, Weich HA (2004) Immunodetection and quantification of vascular endothelial growth factor receptor-3 in human malignant tumor tissues. Int J Cancer 111:184–191PubMedCrossRefGoogle Scholar
  23. 23.
    Bouma-ter Steege JC, Baeten CI, Thijssen VL, Satijn SA, Verhoeven IC, Hillen HF, Wagstaff J, Griffioen AW (2004) Angiogenic profile of breast carcinoma determines leukocyte infiltration. Clin Cancer Res 10:7171–7178PubMedCrossRefGoogle Scholar
  24. 24.
    Byeon JS, Jung HY, Lee YJ, Lee D, Lee GH, Myung SJ, Yang SK, Hong WS, Kim JH, Min YI, Kim JS (2004) Clinicopathological significance of vascular endothelial growth factor-C and cyclooxygenase-2 in esophageal squamous cell carcinoma. J Gastroenterol Hepatol 19:648–654PubMedCrossRefGoogle Scholar
  25. 25.
    Cassella M, Skobe M (2002) Lymphatic vessel activation in cancer. Ann NY Acad Sci 979:120–130PubMedCrossRefGoogle Scholar
  26. 26.
    Koyama Y, Kaneko K, Akazawa K, Kanbayashi C, Kanda T, Hatakeyama K (2003) Vascular endothelial growth factor-C and vascular endothelial growth factor-d messenger RNA expression in breast cancer: association with lymph node metastasis. Clin Breast Cancer 4:354–360PubMedCrossRefGoogle Scholar
  27. 27.
    Ryuto M, Ono M, Izumi H, Yoshida S, Weich HA, Kohno K, Kuwano M (1996) Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1. J Biol Chem 271:28220–28228PubMedCrossRefGoogle Scholar
  28. 28.
    Jenny B, Harrison JA, Baetens D, Tille JC, Burkhardt K, Mottaz H, Kiss JZ, Dietrich PY, de Tribolet N, Pizzolato GP, Pepper MS (2006) Expression and localization of VEGF-C and VEGFR-3 in glioblastomas and haemangioblastomas. J Pathol 209:34–43PubMedCrossRefGoogle Scholar
  29. 29.
    Cohen CD, Frach K, Schlondorff D, Kretzler M (2002) Quantitative gene expression analysis in renal biopsies: a novel protocol for a high-throughput multicenter application. Kidney Int 61:133–140PubMedCrossRefGoogle Scholar
  30. 30.
    Miebach S, Grau S, Hummel V, Rieckmann P, Tonn JC, Goldbrunner RH (2005) Isolation and culture of microvascular endothelial cells from gliomas of different WHO grades. J Neurooncol 76:39–48CrossRefGoogle Scholar
  31. 31.
    Salven P, Mustjoki S, Alitalo R, Alitalo K, Rafii S (2003) VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 101:168–172PubMedCrossRefGoogle Scholar
  32. 32.
    Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282:946–949PubMedCrossRefGoogle Scholar
  33. 33.
    Ji RC (2005) Characteristics of lymphatic endothelial cells in physiological and pathological conditions. Histol Histopathol 20:155–175PubMedGoogle Scholar
  34. 34.
    Chen F, Takenaka K, Ogawa E, Yanagihara K, Otake Y, Wada H, Tanaka F (2004) Flt-4-positive endothelial cell density and its clinical significance in non-small cell lung cancer. Clin Cancer Res 10:8548–8553PubMedCrossRefGoogle Scholar
  35. 35.
    Folpe AL, Veikkola T, Valtola R, Weiss SW (2000) Vascular endothelial growth factor receptor-3 (VEGFR-3): a marker of vascular tumors with presumed lymphatic differentiation, including Kaposi’s sarcoma, kaposiform and Dabska-type hemangioendotheliomas, and a subset of angiosarcomas. Mod Pathol 13:180–185PubMedCrossRefGoogle Scholar
  36. 36.
    Longatto FA, Martins A, Costa SM, Schmitt FC (2005) VEGFR-3 expression in breast cancer tissue is not restricted to lymphatic vessels. Pathol Res Pract 201:93–99CrossRefGoogle Scholar
  37. 37.
    Yonemura Y, Endo Y, Fujita H, Fushida S, Ninomiya I, Bandou E, Taniguchi K, Miwa K, Ohoyama S, Sugiyama K, Sasaki T (1999) Role of vascular endothelial growth factor C expression in the development of lymph node metastasis in gastric cancer. Clin Cancer Res 5:1823–1829PubMedGoogle Scholar
  38. 38.
    Debinski W, Slagle-Webb B, Achen MG, Stacker SA, Tulchinsky E, Gillespie GY, Gibo DM (2001) VEGF-D is an X-linked/AP-1 regulated putative onco-angiogen in human glioblastoma multiforme. Mol Med 7:598–608PubMedGoogle Scholar
  39. 39.
    Witmer AN, Blaauwgeers HG, Weich HA, Alitalo K, Vrensen GF, Schlingemann RO (2002) Altered expression patterns of VEGF receptors in human diabetic retina and in experimental VEGF-induced retinopathy in monkey. Invest Ophthalmol Vis Sci 43:849–857PubMedGoogle Scholar
  40. 40.
    Moffat BA, Chen M, Kariaapper MS, Hamstra DA, Hall DE, Stojanovska J, Johnson TD, Blaivas M, Kumar M, Chenevert TL, Rehemtulla A, Ross BD (2006) Inhibition of vascular endothelial growth factor (VEGF)-A causes a paradoxical increase in tumor blood flow and up-regulation of VEGF-D. Clin Cancer Res 12:1525–1532PubMedCrossRefGoogle Scholar
  41. 41.
    Zeng Y, Opeskin K, Baldwin ME, Horvath LG, Achen MG, Stacker SA, Sutherland RL, Williams ED (2004) Expression of vascular endothelial growth factor receptor-3 by lymphatic endothelial cells is associated with lymph node metastasis in prostate cancer. Clin Cancer Res 10:5137–5144PubMedCrossRefGoogle Scholar
  42. 42.
    Cao Y, Linden P, Farnebo J, Cao R, Eriksson A, Kumar V, Qi JH, Claesson-Welsh L, Alitalo K (1998) Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl Acad Sci USA 95:14389–14394PubMedCrossRefGoogle Scholar
  43. 43.
    Dixelius J, Makinen T, Wirzenius M, Karkkainen MJ, Wernstedt C, Alitalo K, Claesson-Welsh L (2003) Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J Biol Chem 278:40973–40979PubMedCrossRefGoogle Scholar
  44. 44.
    Ji RC, Miura M, Qu P, Kato S (2004) Expression of VEGFR-3 and 5′-nase in regenerating lymphatic vessels of the cutaneous wound healing. Microsci Res Tech 64:279–286CrossRefGoogle Scholar
  45. 45.
    Ji RC, Kato S (2003) Lymphatic network and lymphangiogenesis in the gastric wall. J Histochem Cytochem 51:331–338PubMedGoogle Scholar
  46. 46.
    Kubo H, Fujiwara T, Jussila L, Hashi H, Ogawa M, Shimizu K, Awane M, Sakai Y, Takabayashi A, Alitalo K, Yamaoka Y, Nishikawa SI (2000) Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 96:546–553PubMedGoogle Scholar
  47. 47.
    Makinen T, Alitalo K (2002) Molecular mechanisms of lymphangiogenesis. Cold Spring Harb Symp Quant Biol 67:189–196PubMedCrossRefGoogle Scholar
  48. 48.
    Makinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC, Wise L, Mercer A, Kowalski H, Kerjaschki D, Stacker SA, Achen MG, Alitalo K (2001) Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 20:4762–4773PubMedCrossRefGoogle Scholar
  49. 49.
    Alam A, Herault JP, Barron P, Favier B, Fons P, Delesque-Touchard N, Senegas I, Laboudie P, Bonnin J, Cassan C, Savi P, Ruggeri B, Carmeliet P, Bono F, Herbert JM (2004) Heterodimerization with vascular endothelial growth factor receptor-2 (VEGFR-2) is necessary for VEGFR-3 activity. Biochem Biophys Res Commun 324:909–915PubMedCrossRefGoogle Scholar
  50. 50.
    Matsumura K, Hirashima M, Ogawa M, Kubo H, Hisatsune H, Kondo N, Nishikawa S, Chiba T, Nishikawa S (2003) Modulation of VEGFR-2-mediated endothelial-cell activity by VEGF-C/VEGFR-3. Blood 101:1367–1374PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • S. J. Grau
    • 1
  • F. Trillsch
    • 1
    • 2
  • J. Herms
    • 3
  • N. Thon
    • 1
  • P. J. Nelson
    • 2
  • J. -C. Tonn
    • 1
  • R. Goldbrunner
    • 1
  1. 1.Department of NeurosurgeryKlinikum Großhadern, Ludwig-Maximilians-University MunichMunichGermany
  2. 2.Medizinische PoliklinikLudwig-Maximilians-University MunichMunichGermany
  3. 3.Center for Neuropathology and Prion ResearchLudwig-Maximilians-University MunichMunichGermany

Personalised recommendations