Journal of Neuro-Oncology

, Volume 82, Issue 2, pp 133–139 | Cite as

Hypermethylation of the proapoptotic gene TMS1/ASC: prognostic importance in glioblastoma multiforme

  • Ramon Martinez
  • Gabriele Schackert
  • Manel Esteller
Laboratory investigation


The identification of clinical subsets of glioblastomas (GBM) associated with different molecular genetic profiles had opened the possibility to design tailored therapies to individual patients. One of the most intrigued subtypes is the long-term survival (LTS) GBM, which responds better to current therapies. The present investigation on GBM from 50 consecutive GBM displaying classic survival and seven LTS GBM is based on molecular epigenetic, clinical and histopathological analyses. Our aim was to recognize biomarkers useful to distinguish LTS from classic GBM. We analyzed the promoter methylation status of key regulator genes implicated in tumor invasion (TIMP2, TIMP3), apoptosis and inflammation (TMS1/ASC, DAPK) as well as overall survival, therapy status and tumor pathological features. For the first purpose a methylation-specific PCR approach was performed to analyze the CpG island promoter methylation status of each gene. The overall TMS1/ASC methylation rate in the 57 analyzed tumors was 21.05%. Hypermethylation of TMS1/ASC was significantly more frequent in LTS GBM (57.1% vs. 16%, P = 0.029, Fisher’s exact test). DAPK promoter hypermethylation was only observed in the LTS subset (14.3%) whereas TIMP2 and TIMP3 were unmethylated in both GBM collectives. Our results strongly suggest that, compared to classic GBM, LTS GBM display distinct epigenetic characteristics which might provide additional prognostic biomarkers for the assessment of this malignancy.


Glioblastoma Long-term survival Epigenetic Hypermethylation TMS1 DAPK TIMP 


  1. 1.
    Scott JN, Rewcastle NB, Brasher PMA, Fulton D, Hagen NA, MacKinnon JA, Hamilton M, Cairncross JC, Forsyth P (1999) Which glioblastoma multiforme patient will become a long-term survivor? A population based study. Ann Neurol 46:183–188PubMedCrossRefGoogle Scholar
  2. 2.
    Prados MD, Levin V (2000) Biology and treatment of malignant glioma. Semin Oncol 27:1–10PubMedGoogle Scholar
  3. 3.
    Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection and survival. J Neurosurg 95:190–198PubMedCrossRefGoogle Scholar
  4. 4.
    Kraus JA, Glesmann N, Beck M, Krex D, Klockgether T, Schackert G, Schlegel U (2000) Molecular analysis of the PTEN, TP53 and CDKN2A tumor suppressor genes in long-term survivors of glioblastoma multiforme. J Neurooncol 48:89–94PubMedCrossRefGoogle Scholar
  5. 5.
    Senger D, Cairncross JG, Forsyth PA (2003) Long-term survivors of glioblastoma: statistical aberration or important unrecognized molecular subtype? Cancer J 9:214–221PubMedCrossRefGoogle Scholar
  6. 6.
    Newcomb EW, Cohen H, Lee SR, Bhalla SK, Bloom J, Hayes RL, Miller DC (1998) Survival of patients with glioblastoma multiforme is not influenced by altered expression of p16, p53, EGFR, MDM2 or Bcl-2 genes. Brain Pathol 8:655–667PubMedCrossRefGoogle Scholar
  7. 7.
    Schmidt MC, Antweiler S, Urban N, Mueller W, Kuklik A, Meyer-Puttlitz B, Wiestler OD, Louis DN, Fimmers R, von Deimling A (2002) Impact of genotype and morphology on the prognosis of glioblastoma. J Neuropathol Exp Neurol 61:321–328PubMedGoogle Scholar
  8. 8.
    Burton EC, Lamborn KR, Forsyth P, Scott J, O'Campo J, Uyehara-Lock J, Prados M, Berger M, Passe S, Uhm J, O'Neill B, Jenkins RB, Aldape KD (2002) Aberrant p53, mdm2 and proliferation differ in glioblastomas from long-term compared with typical survivors. Clin Cancer Res 8:180–187PubMedGoogle Scholar
  9. 9.
    Burton EC, Lamborn KR, Feuerstein BG, Prados M, Scott J, Forsyth P, Passe S, Jenkins RB, Aldape KD (2002) Genetic aberrations defined by comparative genomic hybridization distinguish long-term from typical survivors of glioblastoma. Cancer Res 62:6205–6210PubMedGoogle Scholar
  10. 10.
    Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB, Herman JG (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343:1350–1354PubMedCrossRefGoogle Scholar
  11. 11.
    Gonzalez-Gomez P, Bello MJ, Arjona D, Lomas J, Alonso ME, De Campos JM, Vaquero J, Isla A, Gutierrez M, Rey JA (2003) Promoter hypermethylation of multiple genes in astrocytic gliomas. Int J Oncol 22:601–608PubMedGoogle Scholar
  12. 12.
    Paz MF, Yaya-Tur R, Rojas-Marcos I, Reynes G, Pollan M, Aguirre-Cruz L, Garcia-Lopez JL, Piquer J, Safont MJ, Balana C, Sanchez-Cespedes M, Garcia-Villanueva M, Arribas L, Esteller M (2004) CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res 10:4933–4938PubMedCrossRefGoogle Scholar
  13. 13.
    Stone AR, Bobo W, Brat DJ, Devi NS, Van Meir EG, Vertino PM (2004) Aberrant methylation and down-regulation of TMS1/ASC in human glioblastoma. Am J Pathol 165:1151–1161PubMedGoogle Scholar
  14. 14.
    Esteller M, Herman JG (2004) Generating mutations but providing chemosensitivity: the role of O6-methylguanine DNA methyltransferase in human cancer. Oncogene 23:1–8PubMedCrossRefGoogle Scholar
  15. 15.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003PubMedCrossRefGoogle Scholar
  16. 16.
    Uhlmann K, Rohde K, Zeller C, Szymas J, Vogel S, Marczinek K, Thiel G, Nurnberg P, Laird PW (2003) Distinct methylation profiles of glioma subtypes. Int J Cancer 106:52–59PubMedCrossRefGoogle Scholar
  17. 17.
    Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72:141–96PubMedCrossRefGoogle Scholar
  18. 18.
    Esteller M, Corn PG, Baylin SB, Herman JG (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229PubMedGoogle Scholar
  19. 19.
    Conway KE, McConnell BB, Bowring CE, Donald CD, Warren ST, Vertino PM (2000) TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res 60:6236–6242PubMedGoogle Scholar
  20. 20.
    Terasawa K, Sagae S, Toyota M, Tsukada K, Ogi K, Satoh A, Mita H, Imai K, Tokino T, Kudo R (2004) Epigenetic inactivation of TMS1/ASC in ovarian cancer. Clin Cancer Res 10:2000–2006PubMedCrossRefGoogle Scholar
  21. 21.
    Kissil JL, Feinstein E, Cohen O, Jones PA, Tsai YC, Knowles MA, Eydmann ME, Kimchi A (1997) DAP-kinase loss of expression in various carcinoma and B-cell lymphoma cell lines: possible implications for role as tumor suppressor gene. Oncogene 15:403–407PubMedCrossRefGoogle Scholar
  22. 22.
    Tang X, Khuri FR, Lee JJ, Kemp BL, Liu D, Hong WK, Mao L (2000) Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I non-small-cell lung cancer. J Natl Cancer Inst 92:1511–1516PubMedCrossRefGoogle Scholar
  23. 23.
    Waki T, Tamura G, Sato M, Terashima M, Nishizuka S, Motoyama T (2003) Promoter methylation status of DAP-kinase and RUNX3 genes in neoplastic and non-neoplastic gastric epithelia. Cancer Sci 94:360–364PubMedCrossRefGoogle Scholar
  24. 24.
    Brock MV, Gou M, Akiyama Y, Muller A, Wu TT, Montgomery E, Deasel M, Germonpre P, Rubinson L, Heitmiller RF, Yang SC, Forastiere AA, Baylin SB, Herman JG (2003) Prognostic importance of promoter hypermethylation of multiple genes in esophageal adenocarcinoma. Clin Cancer Res 9:2912–2919PubMedGoogle Scholar
  25. 25.
    Gonzalez-Gomez P, Bello MJ, Alonso ME, Lomas J, Arjona D, Aminoso C, De Campos JM, Isla A, Gutierrez M, Rey JA (2003) Frequent death-associated protein-kinase promoter hypermethylation in brain metastases of solid tumors. Oncol Rep 10:1031–1033PubMedGoogle Scholar
  26. 26.
    Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821–9826PubMedCrossRefGoogle Scholar
  27. 27.
    Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59:793–797PubMedGoogle Scholar
  28. 28.
    Stehlik C, Reed JC (2004) The PYRIN connection: novel players in innate immunity and inflammation. J Exp Med 200:551–558PubMedCrossRefGoogle Scholar
  29. 29.
    Srinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, Alnemri ES (2002) The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem 277:21119–21122PubMedCrossRefGoogle Scholar
  30. 30.
    Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426PubMedCrossRefGoogle Scholar
  31. 31.
    Stehlik C, Lee SH, Dorfleutner A, Stassinopoulos A, Sagara J, Reed JC (2003) Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J Immunol 171:6154–6163PubMedGoogle Scholar
  32. 32.
    Yanagawa N, Tamura G, Oizumi H, Takahashi N, Shimazaki Y, Motoyama T (2003) Promoter hypermethylation of tumor suppressor and tumor-related genes in non-small cell lung cancers. Cancer Sci 94:589–592PubMedCrossRefGoogle Scholar
  33. 33.
    Bachman KE, Herman JG, Corn PG, Merlo A, Costello JF, Cavenee WK, Baylin SB, Graff JR (1999) Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res 59:798–802PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Ramon Martinez
    • 1
    • 3
  • Gabriele Schackert
    • 1
  • Manel Esteller
    • 2
  1. 1.Department of NeurosurgeryUniversity of DresdenDresdenGermany
  2. 2.Cancer Epigenetics LaboratorySpanish National Cancer Centre (CNIO)MadridSpain
  3. 3.Department of Neurosurgery, Klinikum FuldaAcademic Hospital Philipps University MarburgFuldaGermany

Personalised recommendations