Acute morphological sequelae of photodynamic therapy with 5-aminolevulinic acid in the C6 spheroid model

  • Pitr Zelenkov
  • Reinhold Baumgartner
  • Karl Bise
  • Michael Heide
  • Richard Meier
  • Susanne Stocker
  • Ronald Sroka
  • Roland Goldbrunner
  • Walter StummerEmail author
Laboratory Investigation



Aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) may represent a treatment option for malignant brain tumors. We used a three-dimensional cell culture system, the C6 glioma spheroid model, to study acute effects of PDT and how they might be influenced by treatment conditions.


Spheroids were incubated for 4 h in 100 μg/ml ALA in 5% CO2 in room air or 95% O2 with subsequent irradiation using a diode laser (λ = 635 nm, 40 mW/cm2, total fluence 25 J/cm2). Control groups were “laser only”, “ALA only”, and “no drug no light”. Annexin V-FITC, a marker used for detection of apoptosis, propidium iodide (PI), a marker for necrotic cells and H 33342, a chromatin stain, were used for morphological characterization of PDT effects by confocal laser scanning and fluorescence microscopy. Hematoxylin–eosin staining and TdT-FragEL (TUNEL) assay were used on cryosections. Growth kinetics were followed for 8 days after PDT.


PDT after incubation in 5% CO2 provided incomplete cell death and growth delay in spheroids of >350 μm diameter. However, complete cell death and growth arrest occurred in smaller spheroids (<350 μm). Incubation in 95% O2 with subsequent PDT resulted in complete cell death and growth arrest regardless of spheroid size. In incompletely damaged spheroids viable cells were restricted to spheroid centers. The rate of cell death in all control groups was negligible. Cell death was accompanied by annexin/PI costaining, but there was also evidence for annexin V-FITC staining without PI uptake.


PDT of experimental glioma results in rapid and significant cell death that could be verified as acute necrosis immediately after irradiation. This effect depended on O2 concentration and spheroid size.


Malignant glioma 5-ALA photodynamic therapy C6-Spheroids 



This work was supported by Deutsche Krebshilfe e.V. Projekt-Nr. 70–2864. We gratefully acknowledge advice from Jorg Cristian Tonn, Prof., MD, Department of Neurosurgery, Herbert Stepp, Ph.D., Tobias Beck, Dipl. phys., Laser Research Laboratory, Ludwig-Maximilians University, Munich, Germany.


  1. 1.
    Bell HS, Whittle IR, Walker M, Leaver HA, Wharton SB (2001) The development of necrosis and apoptosis in glioma: experimental findings using spheroid culture systems. Neuropathol Appl Neurobiol 27:291–304PubMedCrossRefGoogle Scholar
  2. 2.
    Betz AL, Iannotti F, Hoff JT (1989) Brain edema: a classification based on blood–brain barrier integrity. Cerebrovasc Brain Metab Rev 1:133–154PubMedGoogle Scholar
  3. 3.
    Bigelow CE,Mitra S, Knuechel R, Forster TH (2001) ALA- and ALA-Hexylester-induced protoporphyrin IX fluorescence and distribution in multicell tumor. Br J Cancer 85:727–734PubMedCrossRefGoogle Scholar
  4. 4.
    Brandes AA (2003) State-of-the-art treatment of high-grade brain tumors. Semin Oncol 30(Suppl 19):4–9PubMedCrossRefGoogle Scholar
  5. 5.
    Brock CS, Bower M (1997) Current perspectives in gliomas. Med Oncol 14:103–120PubMedCrossRefGoogle Scholar
  6. 6.
    Cheung-Hoi Y, Wong HK, Yung HW, Lau LT (2001) Ischemia-induced apoptosis in primary cultures of astrocytes. Glia 35:121–130CrossRefGoogle Scholar
  7. 7.
    Dubessy C, Merlin JM, Marchal C, Guillemin F (2000) Spheroids in radiobiology and photodynamic therapy. Crit Rev Oncol Hematol 36:179–192PubMedGoogle Scholar
  8. 8.
    Eleouet S, Rousset N, Carre J, Bourre L, Vonarx V, Lajat Y, Beijersbergen van Henegouwen GM, Patrice T (2000) In vitro fluorescence, toxicity and phototoxicity induced by delta-aminolevulinic acid (ALA) or ALA-esters. Photochem Photobiol 71:447–454PubMedCrossRefGoogle Scholar
  9. 9.
    van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31:1–9PubMedCrossRefGoogle Scholar
  10. 10.
    Foster TH, Hartley DF, Nichols MG, Hilf R (1993) Fluence rate effects in photodynamic therapy of multicell tumor spheroids. Cancer Res 53:1249–1254PubMedGoogle Scholar
  11. 11.
    Friesen SA, Hjortland GO, Madsen SJ, Hirschberg H, Engebraten O, Nesland JM, Peng Q (2002) 5-Aminolevulinic acid-based photodynamic detection and therapy of brain tumors (Review). Int J Oncol 21:577–582PubMedGoogle Scholar
  12. 12.
    Georgakoudi I, Nichols MG, Foster TH (1999) The mechanism of Photofrin photobleaching and its consequences for photodynamic dosimetry. Photochem Photobiol 65:135–144Google Scholar
  13. 13.
    Graham SH, Chen J (2001) Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab 21:99–109PubMedCrossRefGoogle Scholar
  14. 14.
    Hebeda KM, Saarnak AE, Olivo M, Sterenborg HJ, Wolbers JG et al (1998) 5-aminolevulinic acid induced endogenous porphyrin fluorescence in 9L and C6 brain tumours and in the normal rat brain. Acta Neurochir 140:503–512CrossRefGoogle Scholar
  15. 15.
    Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work? Photochem Photobiol 55:777–779Google Scholar
  16. 16.
    Hirschberg H, Sun CH, Tromberg BJ, Yeh AT, Madsen SJ (2004) Enhanced cytotoxic effects of 5-aminolevulinic acid mediated photodynamic therapy by concurrent hyperthermia in glioma spheroids. J Neurooncol 70:289–299PubMedCrossRefGoogle Scholar
  17. 17.
    Ito S, Rachinger W, Stepp H, Reulen HJ, Stummer W (2005) Oedema formation in experimental photo-irradiation therapy of brain tumours using 5-ALA. Acta Neurochir (Wien) 147:57–65CrossRefGoogle Scholar
  18. 18.
    Knappe A, Beyer W, Riesenberg R, Schneede P, Sroka R, Unsold E, Valet G (1995) Computer-controlled laser irradiation unit for studies of light-induced processes in cell cultures. Biomed Tech (Berl) 40:272–275CrossRefGoogle Scholar
  19. 19.
    Kostron H, Obwegeser A, Jakober R (1996) Photodynamic therapy in neurosurgery: a review. J Photochem Photobiol B, Biol 36:157–168PubMedCrossRefGoogle Scholar
  20. 20.
    Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:289–298CrossRefGoogle Scholar
  21. 21.
    Macecek J, Kolarova H, Psotova J, Bajgar R, Huf M, Nevrelova P, Tomeeka M, Mosinger J (2004) Assessment of cellular damage by comet assay after photodynamic therapy in vitro. Acta Medica (Hradec Kralove) 47:327–329Google Scholar
  22. 22.
    Madsen SJ, Sun CH, Tromberg BJ, Hirschberg H (2001) Development of a novel indwelling balloon applicator for optimizing light delivery in photodynamic therapy. Lasers Surg Med 29:406–412PubMedCrossRefGoogle Scholar
  23. 23.
    Madsen SJ, Sun CH, Tromberg BJ, Wallace VP, Hirschberg H (2000) Photodynamic therapy of human glioma spheroids using 5-aminolevulinic acid. Photochem Photobiol 72:128–134PubMedCrossRefGoogle Scholar
  24. 24.
    Madsen SJ, Sun CH, Tromberg BJ, Hirschberg H (2003) Repetitive 5-aminolevulinic acid-mediated photodynamic therapy on human glioma spheroids. J Neurooncol 62:243–250PubMedCrossRefGoogle Scholar
  25. 25.
    Madsen SJ, Sun CH, Tromberg BJ, Yeh AT, Sanchez R, Hirschberg H (2002) Effects of combined photodynamic therapy and ionizing radiation on human glioma spheroids. Photochem Photobiol 76:411–416PubMedCrossRefGoogle Scholar
  26. 26.
    Mahaley MS Jr, Mettlin C, Natarajan N, Laws ER Jr, Peace BB (1998) National survey of patterns of care for brain-tumor patients. J Neurosurg 71:826–836Google Scholar
  27. 27.
    Muller PJ, Wilson BC (1995) Photodynamic therapy for recurrent supratentorial gliomas. Semin Surg Oncol 11:346–543PubMedGoogle Scholar
  28. 28.
    Mueller-Klieser W, Bourrat B, Gabbert H, Sutherland RM (1985) Changes in O2 consumption of multicellular spheroids during development of necrosis. Adv Exp Med Biol 191:775–784PubMedGoogle Scholar
  29. 29.
    Nichols MG, Foster TH (1994) Oxygen diffusion and reaction-kinetics in the photodynamic therapy of multicell tumor spheroids. Phys Med Biol 39:2161–2181PubMedCrossRefGoogle Scholar
  30. 30.
    Nirmala C, Rao JS, Ruifrok AC, Langford LA, Obeyesekere M (2001) Growth characteristics of glioblastoma spheroids. Int J Oncol 19:1109–1115PubMedGoogle Scholar
  31. 31.
    Oleinick NL, Morris RL, Belichenko T (2002) The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci 1:1–21PubMedCrossRefGoogle Scholar
  32. 32.
    Olzowy B, Hundt CS, Stocker S, Bise K, Reulen HJ, Stummer W (2002) Photoirradiation therapy of experimental malignant glioma with 5-aminolevulinic acid. J Neurosurg 97:970–976PubMedCrossRefGoogle Scholar
  33. 33.
    Origitano TC, Caron MJ, Reichman OH (1994) Photodynamic therapy for intracranial neoplasms. Literature review and institutional experience. Mol Chem Neuropathol 21:337–352PubMedCrossRefGoogle Scholar
  34. 34.
    Plaetzer K, Kiesslich T, Krammer B, Hammerl P (2002) Characterization of the cell death modes and the associated changes in cellular energy supply in response to AlPcS4-PDT. Photochem Photobiol Sci 1:172–177PubMedCrossRefGoogle Scholar
  35. 35.
    Popovic EA, Kaye AH, Hill JS (1996) Photodynamic therapy of brain tumors. J Clin Laser Med Surg 14:251–261PubMedGoogle Scholar
  36. 36.
    Schellenberger EA, Bogdanov A Jr, Petrovsky A, Ntziachristos V, Weissleder R, Josephson L (2003) Optical imaging of apoptosis as a biomarker of tumor response to chemotherapy. Neoplasia 5:187–192PubMedGoogle Scholar
  37. 37.
    Stummer W, Gotz C, Hassan A, Heimann A, Kempski O (1993) Kinetics of Photofrin II in perifocal brain edema. Neurosurgery 33:1075–1081PubMedGoogle Scholar
  38. 38.
    Stummer W, Hassan A, Kempski O et al (1996) Photodynamic therapy within edematous brain tissue: considerations on sensitizer dose and time point of laser irradiation. J Photochem Photobiol B, Biol 36:179–181PubMedCrossRefGoogle Scholar
  39. 39.
    Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013PubMedCrossRefGoogle Scholar
  40. 40.
    Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, ALA-glioma study group (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Onc 7(5):392–401CrossRefGoogle Scholar
  41. 41.
    Stummer W, Stocker S, Novotny A, Heimann A, Sauer O, Kempski O, Plesnila N, Wietzorrek J, Reulen HJ (1998) In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid. J Photochem Photobiol B, Biol 45:160–169PubMedCrossRefGoogle Scholar
  42. 42.
    Stummer W, Stocker S, Wagner S, Stepp H, Fritsch C, Goetz C, Goetz AE, Kiefmann R, Reulen HJ (1998) Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 42:518–525PubMedCrossRefGoogle Scholar
  43. 43.
    Tsai JC, Hsiao YY, Teng LJ, Chen CT, Kao MC (1999) Comparative study on the ALA photodynamic effects of human glioma and meningioma cells. Lasers Surg Med 24:296–305PubMedCrossRefGoogle Scholar
  44. 44.
    Uehlinger P, Zellweger M, Wagnieres G, Juillerat-Jeanneret L, van den Bergh H, Lange N (2000) 5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells. J Photochem Photobiol B, Biol 54:72–80PubMedCrossRefGoogle Scholar
  45. 45.
    Wallner KE, Galicich JH, Krol G, Arbit E, Malkin MG (1989) Patterns of failure following treatment for glioblastoma-multiforme and anaplastic astocytoma. Int J Rad Oncol Biol Phys 16:1405–1409Google Scholar
  46. 46.
    Webber J, Kessel D, Fromm D (1997) Side effects and photosensitization of human tissues after aminolevulinic acid. J Surg Res 68(1):31–37PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Pitr Zelenkov
    • 1
    • 2
  • Reinhold Baumgartner
    • 2
  • Karl Bise
    • 3
  • Michael Heide
    • 2
  • Richard Meier
    • 2
  • Susanne Stocker
    • 2
  • Ronald Sroka
    • 2
  • Roland Goldbrunner
    • 1
  • Walter Stummer
    • 4
    Email author
  1. 1.Department of NeurosurgeryLudwig-Maximilians UniversityMunichGermany
  2. 2.Laser Research LaboratoryLudwig-Maximilians UniversityMunichGermany
  3. 3.Institute for NeuropathologyLudwig-Maximilians UniversityMunichGermany
  4. 4.Department of NeurosurgeryHeinrich-Heine UniversityDüsseldorfGermany

Personalised recommendations