Journal of Neuro-Oncology

, Volume 81, Issue 2, pp 139–148 | Cite as

Expression of nine tumour antigens in a series of human glioblastoma multiforme: interest of EGFRvIII, IL-13Rα2, gp100 and TRP-2 for immunotherapy

  • Stéphan Saikali
  • Tony Avril
  • Brigitte Collet
  • Abderrahmane Hamlat
  • Jean-Yves Bansard
  • Bernard Drenou
  • Yvon Guegan
  • Véronique QuillienEmail author
Laboratory Investigation


In this study, we investigated the mRNA and protein expression of nine tumour antigens in human glioblastoma multiforme with a view to their possible use in dendritic cell-based immunotherapy. Expression of ALK, EGFRvIII, GALT3, gp100, IL-13Rα2, MAGE-A3, NA17-A, TRP-2 and tyrosinase were studied by real-time RT-PCR on frozen tissues using a series of 47 tumour samples from patients with glioblastoma. Results were compared with non-neoplastic brain expression or glioblastoma samples with very low levels of expression near the limits of detection for EGFRvIII and MAGE-A3, as these latter two antigens were not detected in non-neoplastic brain. Tumour antigens showing a 5-fold increase in mRNA expression were considered as positive, and only antigens displaying an mRNA over-expression in a significant number of cases were analysed by immunohistochemistry on paraffin-embedded sections. Using real time RT-PCR, we found EGFRvIII, gp100, IL-13Rα2 and TRP-2 to be positive in 64, 38, 32 and 21% of cases, respectively. While we observed no over-expression for ALK, GALT3 and tyrosinase, 3 samples out of 47 were positive for MAGE-3 and 1 sample for NA17-A. More than 25% of tumour cells showed strong protein expression in 13, 34, 85 and 96% of GBM samples for gp100, TRP-2, EGFRvIII and IL-13Rα2, respectively. Interestingly, protein expression of at least 3 antigens was observed in 38% of cases. These results point out the importance of EGFRvIII, IL-13Rα2 and, to a less extent gp100 and TRP-2, for developing an immunotherapy strategy against glioblastoma.


Glioblastoma EGFRvIII gp100 IL-13Rα2 TRP-2 Dendritic cell-based immunotherapy 



Cytotoxic T cell


Glioblastoma multiforme


Major histocompatibility complex


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the Neurosurgery Department (Hôpital Pontchaillou, Rennes) for providing us with tumour samples, as well as S. Moiteaux, P. Bellaud, F. Jouan, and A.␣Denais for their technical assistance. M.S.N. Carpenter post-edited the English style. This study was supported by Grants Nos. PHRC 2003, CPER 2000-2006 Région Bretagne.


  1. 1.
    Holland EC (2000) Glioblastoma multiforme: the terminator. Proc Natl Acad Sci USA 97:6242–6244PubMedCrossRefGoogle Scholar
  2. 2.
    Kikuchi T, Akasaki Y, Irie M et al (2001) Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol Immunother 50:337–344PubMedCrossRefGoogle Scholar
  3. 3.
    Yu JS, Wheeler CJ, Zeltzer PM et al (2001) Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 61:842–847PubMedGoogle Scholar
  4. 4.
    Yamanaka R, Abe T, Yajima N et al (2003) Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 89:1172–1179PubMedCrossRefGoogle Scholar
  5. 5.
    Kikuchi T, Akasaki Y, Abe T et al (2004) Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother 27:452–459PubMedCrossRefGoogle Scholar
  6. 6.
    Rutkowski S, De Vleeschouwer S, Kaempgen E et al (2004) Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 91:1656–1662PubMedGoogle Scholar
  7. 7.
    Yu JS, Liu G, Ying H et al (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64:4973–4979PubMedCrossRefGoogle Scholar
  8. 8.
    Liau LM, Prins RM, Kiertscher SM et al (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11:5515–5525PubMedCrossRefGoogle Scholar
  9. 9.
    Yamanaka R, Homma J, Yajima N et al (2005) Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res 11:4160–4167PubMedCrossRefGoogle Scholar
  10. 10.
    Chi DD, Merchant RE, Rand R et al (1997) Molecular detection of tumor-associated antigens shared by human cutaneous melanomas and gliomas. Am J Pathol 150:2143–2152PubMedGoogle Scholar
  11. 11.
    Joshi BH, Plautz GE, Puri RK (2000) Interleukin-13 receptor alpha chain: a novel tumor-associated transmembrane protein in primary explants of human malignant gliomas. Cancer Res 60:1168–1172PubMedGoogle Scholar
  12. 12.
    Bernard J, Treton D, Vermot-Desroches C et al (2001) Expression of interleukin 13 receptor in glioma and renal cell carcinoma: IL13Ralpha2 as a decoy receptor for IL13. Lab Invest 81:1223–1231PubMedCrossRefGoogle Scholar
  13. 13.
    Liu G, Khong HT, Wheeler CJ et al (2003) Molecular and functional analysis of tyrosinase-related protein (TRP)-2 as a cytotoxic T lymphocyte target in patients with malignant glioma. J Immunother 26:301–312PubMedCrossRefGoogle Scholar
  14. 14.
    Kawakami M, Kawakami K, Takahashi S et al (2004) Analysis of interleukin-13 receptor alpha2 expression in human pediatric brain tumors. Cancer 101:1036–1042PubMedCrossRefGoogle Scholar
  15. 15.
    Liu G, Ying H, Zeng G et al (2004) HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. Cancer Res 64:4980–4986PubMedCrossRefGoogle Scholar
  16. 16.
    Hoftberger R, Aboul-Enein F, Brueck W et al (2004) Expression of major histocompatibility complex class I molecules on the different cell types in multiple sclerosis lesions. Brain Pathol 14:43–50PubMedCrossRefGoogle Scholar
  17. 17.
    Iwahara T, Fujimoto J, Wen D et al (1997) Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 14:439–449PubMedCrossRefGoogle Scholar
  18. 18.
    Tsuda N, Nonaka Y, Shichijo S et al (2002) UDP-Gal: betaGlcNAc beta1, 3-galactosyltransferase, polypeptide 3 (GALT3) is a tumour antigen recognised by HLA-A2-restricted cytotoxic T lymphocytes from patients with brain tumour. Br J Cancer 87:1006–1012PubMedCrossRefGoogle Scholar
  19. 19.
    Dirks WG, Fahnrich S, Lis Y et al (2002) Expression and functional analysis of the anaplastic lymphoma kinase (ALK) gene in tumor cell lines. Int J Cancer 100:49–56PubMedCrossRefGoogle Scholar
  20. 20.
    Powers C, Aigner A, Stoica GE et al (2002) Pleiotrophin signaling through anaplastic lymphoma kinase is rate-limiting for glioblastoma growth. J Biol Chem 277:14153–14158PubMedCrossRefGoogle Scholar
  21. 21.
    Guilloux Y, Lucas S, Brichard VG et al (1996) A peptide recognized by human cytolytic T lymphocytes on HLA-A2 melanomas is encoded by an intron sequence of the N-acetylglucosaminyltransferase V gene. J Exp Med 183:1173–1183PubMedCrossRefGoogle Scholar
  22. 22.
    Sahin U, Koslowski M, Tureci O et al (2000) Expression of cancer testis genes in human brain tumors. Clin Cancer Res 6:3916–3922PubMedGoogle Scholar
  23. 23.
    Scarcella DL, Chow CW, Gonzales MF et al (1999) Expression of MAGE and GAGE in high-grade brain tumors: a potential target for specific immunotherapy and diagnostic markers. Clin Cancer Res 5:335–341PubMedGoogle Scholar
  24. 24.
    Wikstrand CJ, Hale LP, Batra SK et al (1995) Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 55:3140–3148PubMedGoogle Scholar
  25. 25.
    Feldkamp MM, Lala P, Lau N et al (1999) Expression of activated epidermal growth factor receptors, Ras-guanosine triphosphate, and mitogen-activated protein kinase in human glioblastoma multiforme specimens. Neurosurgery 45:1442–1453PubMedCrossRefGoogle Scholar
  26. 26.
    Shinojima N, Tada K, Shiraishi S et al (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63:6962–6970PubMedGoogle Scholar
  27. 27.
    Aldape KD, Ballman K, Furth A et al (2004) Immunohistochemical detection of EGFRvIII in high malignancy grade astrocytomas and evaluation of prognostic significance. J Neuropathol Exp Neurol 63:700–707PubMedGoogle Scholar
  28. 28.
    Biernat W, Huang H, Yokoo H et al (2004) Predominant expression of mutant EGFR (EGFRvIII) is rare in primary glioblastomas. Brain Pathol 14:131–136PubMedCrossRefGoogle Scholar
  29. 29.
    Nishikawa R, Sugiyama T, Narita Y et al (2004) Immunohistochemical analysis of the mutant epidermal growth factor, deltaEGFR, in glioblastoma. Brain Tumor Pathol 21:53–56PubMedCrossRefGoogle Scholar
  30. 30.
    Steiner HH, Bonsanto MM, Beckhove P et al (2004) Antitumor vaccination of patients with glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical benefit. J Clin Oncol 22:4272–4281PubMedCrossRefGoogle Scholar
  31. 31.
    Arjona D, Bello MJ, Alonso ME et al (2005) Molecular analysis of the EGFR gene in astrocytic gliomas: mRNA expression, quantitative-PCR analysis of non-homogeneous gene amplification and DNA sequence alterations. Neuropathol Appl Neurobiol 31:384–394PubMedCrossRefGoogle Scholar
  32. 32.
    Heimberger AB, Hlatky R, Suki D et al (2005) Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res 11:1462–1466PubMedCrossRefGoogle Scholar
  33. 33.
    Debinski W, Gibo DM, Slagle B et al (1999) Receptor for interleukin 13 is abundantly and specifically over-expressed in patients with glioblastoma multiforme. Int J Oncol 15:481–486PubMedGoogle Scholar
  34. 34.
    Ekstrand AJ, Longo N, Hamid ML et al (1994) Functional characterization of an EGF receptor with a truncated extracellular domain expressed in glioblastomas with EGFR gene amplification. Oncogene 9:2313–2320PubMedGoogle Scholar
  35. 35.
    Moscatello DK, Holgado-Madruga M, Godwin AK et al (1995) Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res 55:5536–5539PubMedGoogle Scholar
  36. 36.
    Hershey GK (2003) IL-13 receptors and signaling pathways: an evolving web. J Allergy Clin Immunol 111:677–690; quiz 691Google Scholar
  37. 37.
    Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353:811–822PubMedCrossRefGoogle Scholar
  38. 38.
    Liu G, Akasaki Y, Khong HT et al (2005) Cytotoxic T cell targeting of TRP-2 sensitizes human malignant glioma to chemotherapy. Oncogene 24(33):5226–5234Google Scholar
  39. 39.
    Wu AH, Xiao J, Anker L et al (2006) Identification of EGFRvIII-derived CTL epitopes restricted by HLA A0201 for dendritic cell based immunotherapy of gliomas. J Neurooncol 76:23–30PubMedCrossRefGoogle Scholar
  40. 40.
    Okano F, Storkus WJ, Chambers WH et al (2002) Identification of a novel HLA-A*0201-restricted, cytotoxic T lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor alpha2 chain. Clin Cancer Res 8:2851–2855PubMedGoogle Scholar
  41. 41.
    Lorimer IA (2002) Mutant epidermal growth factor receptors as targets for cancer therapy. Curr Cancer Drug Targets 2:91–102PubMedCrossRefGoogle Scholar
  42. 42.
    Fay JW, Palucka AK, Paczesny S et al (2006) Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34(+) progenitor-derived dendritic cells. Cancer Immunol Immunother 55(10):1209–1218Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Stéphan Saikali
    • 1
  • Tony Avril
    • 2
  • Brigitte Collet
    • 3
  • Abderrahmane Hamlat
    • 4
  • Jean-Yves Bansard
    • 5
  • Bernard Drenou
    • 6
  • Yvon Guegan
    • 4
  • Véronique Quillien
    • 7
    Email author
  1. 1.Département d’Anatomie et cytologie pathologiquesHôpital PontchaillouRennesFrance
  2. 2.UPRES EA3889, Université de Rennes 1RennesFrance
  3. 3.Département de BiologieCentre Eugène MarquisRennesFrance
  4. 4.Département de NeurochirurgieHôpital PontchaillouRennesFrance
  5. 5.INSERM U642, Université de Rennes 1RennesFrance
  6. 6.Département d’HématologieHôpital E. MullerMulhouseFrance
  7. 7.Département de BiologieCentre Eugène Marquis, and UPRESRennesFrance

Personalised recommendations