Advertisement

Journal of Neuro-Oncology

, Volume 81, Issue 1, pp 53–60 | Cite as

Intracranial Thermotherapy using Magnetic Nanoparticles Combined with External Beam Radiotherapy: Results of a Feasibility Study on Patients with Glioblastoma Multiforme

  • Klaus Maier-HauffEmail author
  • Ronny Rothe
  • Regina Scholz
  • Uwe Gneveckow
  • Peter Wust
  • Burghard Thiesen
  • Annelie Feussner
  • Andreas von Deimling
  • Norbert Waldoefner
  • Roland Felix
  • Andreas Jordan
Clinical–Patient Studies

Abstract

We aimed to evaluate the feasibility and tolerability of the newly developed thermotherapy using magnetic nanoparticles on recurrent glioblastoma multiforme. Fourteen patients received 3-dimensional image guided intratumoral injection of aminosilane coated iron oxide nanoparticles. The patients were then exposed to an alternating magnetic field to induce particle heating. The amount of fluid and the spatial distribution of the depots were planned in advance by means of a specially developed treatment planning software following magnetic resonance imaging (MRI). The actually achieved magnetic fluid distribution was measured by computed tomography (CT), which after matching to pre-operative MRI data enables the calculation of the expected heat distribution within the tumor in dependence of the magnetic field strength. Patients received 4–10 (median: 6) thermotherapy treatments following instillation of 0.1–0.7 ml (median: 0.2) of magnetic fluid per ml tumor volume and single fractions (2 Gy) of a radiotherapy series of 16–70 Gy (median: 30). Thermotherapy using magnetic nanoparticles was tolerated well by all patients with minor or no side effects. Median maximum intratumoral temperatures of 44.6°C (42.4–49.5°C) were measured and signs of local tumor control were observed. In conclusion, deep cranial thermotherapy using magnetic nanoparticles can be safely applied on glioblastoma multiforme patients.

Keywords

Thermotherapy Magnetic nanoparticles Glioblastoma Local therapy Clinical study 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the EFRE Project “NanoMed”, Nanotechnology in Medicine, No. 2000-22006 2 ue/2. We thank Steven A. Toms (Brain Tumor Institute, Cleveland Clinic Foundation) for valuable suggestions during discussion of this manuscript.

References

  1. 1.
    Fine HA, Dear KB, Loeffler JS, Black PM, Canellos GP (1993) Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer 71:2585–2597PubMedCrossRefGoogle Scholar
  2. 2.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  3. 3.
    Prados MD, Levin V (2005) Biology and treatment of malignant glioma. Semin Oncol 27:1–10Google Scholar
  4. 4.
    Brandes AA, Fiorentino MV (1996) The role of chemotherapy in recurrent malignant gliomas: an overview. Cancer Invest 14:551–559PubMedGoogle Scholar
  5. 5.
    Wong ET, Hess KR, Gleason MJ, Jaeckle KA, Kyritsis AP, Prados MD, Levin VA, Yung WK (1999) Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol 17:2572–2578PubMedGoogle Scholar
  6. 6.
    Hau P, Baumgart U, Pfeifer K, Bock A, Jauch T, Dietrich J, Fabel K, Grauer O, Wismeth C, Klinkhammer-Schalke M, Allgauer M, Schuierer G, Koch H, Schlaier J, Ulrich W, Brawanski A, Bogdahn U, Steinbrecher A (2003) Salvage therapy in patients with glioblastoma: is there any benefit? Cancer 98:2678–2686PubMedCrossRefGoogle Scholar
  7. 7.
    Tatter SB, Shaw EG, Rosenblum ML, Karvelis KC, Kleinberg L, Weingart J, Olson JJ, Crocker IR, Brem S, Pearlman JL, Fisher JD, Carson K, Grossman SA (2003) An inflatable balloon catheter and liquid 125I radiation source (GliaSite Radiation Therapy System) for treatment of recurrent malignant glioma: multicenter safety and feasibility trial. J Neurosurg 99:297–303PubMedCrossRefGoogle Scholar
  8. 8.
    Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, Herndon JE 2nd, Cokgor I, McLendon RE, Pegram CN, Provenzale JM, Quinn JA, Rich JN, Regalado LV, Sampson JH, Shafman TD, Wikstrand CJ, Wong TZ, Zhao XG, Zalutsky MR, Bigner DD (2002) Phase II trial of murine (131)I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J Clin Oncol 20:1389–1397PubMedCrossRefGoogle Scholar
  9. 9.
    Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC, Whittle IR, Jaaskelainen J, Ram Z (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-oncol 5:79–88PubMedCrossRefGoogle Scholar
  10. 10.
    Menei P, Capelle L, Guyotat J, Fuentes S, Assaker R, Bataille B, Francois P, Dorwling-Carter D, Paquis P, Bauchet L, Parker F, Sabatier J, Faisant N, Benoit JP (2005) Local and sustained delivery of 5-fluorouracil from biodegradable microspheres for the radiosensitization of malignant glioma: a randomized phase II trial. Neurosurgery 56:242–248; discussion 242–248PubMedCrossRefGoogle Scholar
  11. 11.
    Rainov NG, Ren H (2003) Gene therapy for human malignant brain tumors. Cancer J 9:180–188PubMedGoogle Scholar
  12. 12.
    Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3:487–497PubMedCrossRefGoogle Scholar
  13. 13.
    Hulshof MC, Raaymakers BW, Lagendijk JJ, Koot RW, Crezee H, Stalpers LJ, Gonzalez Gonzalez D (2004) A feasibility study of interstitial hyperthermia plus external beam radiotherapy in glioblastoma multiforme using the Multi ELectrode Current Source (MECS) system. Int J Hyperthermia 20:451–463PubMedCrossRefGoogle Scholar
  14. 14.
    Sneed PK, Stauffer PR, McDermott MW, Diederich CJ, Lamborn KR, Prados MD, Chang S, Weaver KA, Spry L, Malec MK, Lamb SA, Voss B, Davis RL, Wara WM, Larson DA, Phillips TL, Gutin PH (1998) Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost + /− hyperthermia for glioblastoma multiforme. Int J Radiat Oncol Biol Phys 40:287–295PubMedCrossRefGoogle Scholar
  15. 15.
    Jordan A, Wust P, Fahling H, John W, Hinz A, Felix R (1993) Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperthermia 9:51–68PubMedGoogle Scholar
  16. 16.
    Jordan A, Scholz R, Wust P, Fahling H, Krause J, Wlodarczyk W, Sander B, Vogl T, Felix R (1997) Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int J Hyperthermia 13:587–605PubMedCrossRefGoogle Scholar
  17. 17.
    Jordan A, Scholz R, Maier-Hauff K, Johannsen M, Wust P, Nadobny J, Schirra H, Schmidt H, Deger S, Loening S, Lanksch W, Felix R (2001) Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magnetism Magn Mater 225:118–126CrossRefGoogle Scholar
  18. 18.
    Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H, Felix R (1999) Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J Magnetism Magn Mat 194:185–196CrossRefGoogle Scholar
  19. 19.
    Jordan A, Scholz R, Maier-Hauff K, van Landeghem F, Waldoefner N, Teichgraeber U, Pinkernelle J, Bruhn H, Neumann F, Thiesen B, von Deimling A, Felix R (2005) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. Journal of Neuro-Oncology Nov 29; [Epub ahead of print] PMID:16314937Google Scholar
  20. 20.
    Wust P, Nadobny J, Felix R, Deuflhard P, John W, Louis A (1989) Numerical approaches to treatment planning in deep RF-hyperthermia. Strahlenther Onkol 165:751–757PubMedGoogle Scholar
  21. 21.
    Arkin H, Xu LX, Holmes KR (1994) Recent developments in modeling heat transfer in blood perfused tissues. IEEE Trans Biomed Eng 41:97–107PubMedCrossRefGoogle Scholar
  22. 22.
    Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10:787–800PubMedGoogle Scholar
  23. 23.
    Johannsen M, Thiesen B, Jordan A, Taymoorian K, Gneveckow U, Waldofner N, Scholz R, Koch M, Lein M, Jung K, Loening SA (2005) Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Prostate 64:283–292PubMedCrossRefGoogle Scholar
  24. 24.
    Johannsen M, Thiesen B, Gneveckow U, Taymoorian K, Waldofner N, Scholz R, Deger S, Jung K, Loening SA, Jordan A (2006) Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer. Prostate 66:97–104PubMedCrossRefGoogle Scholar
  25. 25.
    Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G,␣Kerner T, Felix R, Riess H (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hemat 43:33–56CrossRefGoogle Scholar
  26. 26.
    Lagendijk JJ, Van Rhoon GC, Hornsleth SN, Wust P, De Leeuw AC, Schneider CJ, Van Dijk JD, Van Der Zee J, Van Heek-Romanowski R, Rahman SA, Gromoll C (1998) ESHO quality assurance guidelines for regional hyperthermia. Int J Hyperthermia 14:125–133PubMedGoogle Scholar
  27. 27.
    Oleson JR, Samulski TV, Leopold KA, Clegg ST, Dewhirst MW, Dodge RK, George SL (1993) Sensitivity of hyperthermia trial outcomes to temperature and time: implications for thermal goals of treatment. Int J Radiat Oncol Biol Phys 25:289–297PubMedGoogle Scholar
  28. 28.
    Sherar M, Liu FF, Pintilie M, Levin W, Hunt J, Hill R, Hand J, Vernon C, van Rhoon G, van der Zee J, Gonzalez DG, van Dijk J, Whaley J, Machin D (1997) Relationship between thermal dose and outcome in thermoradiotherapy treatments for superficial recurrences of breast cancer: data from a phase III trial. Int J Radiat Oncol Biol Phys 39:371–380PubMedCrossRefGoogle Scholar
  29. 29.
    Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ (2003) Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 19:267–294PubMedCrossRefGoogle Scholar
  30. 30.
    Jones EL, Oleson JR, Prosnitz LR, Samulski TV, Vujaskovic Z, Yu D, Sanders LL, Dewhirst MW (2005) Randomized trial of hyperthermia and radiation for superficial tumors. J Clin Oncol 23:3079–3085PubMedCrossRefGoogle Scholar
  31. 31.
    Curran WJ Jr, Scott CB, Horton J, Nelson JS, Weinstein AS, Fischbach AJ, Chang CH, Rotman M, Asbell SO, Krisch RE et al (1993) Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst 85:704–710PubMedGoogle Scholar
  32. 32.
    Scott CB, Scarantino C, Urtasun R, Movsas B, Jones CU, Simpson JR, Fischbach AJ, Curran WJ Jr (1998) Validation and predictive power of Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis classes for malignant glioma patients: a report using RTOG 90–06. Int J Radiat Oncol Biol Phys 40:51–55PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Klaus Maier-Hauff
    • 1
    Email author
  • Ronny Rothe
    • 1
  • Regina Scholz
    • 2
  • Uwe Gneveckow
    • 2
  • Peter Wust
    • 3
  • Burghard Thiesen
    • 3
  • Annelie Feussner
    • 3
  • Andreas von Deimling
    • 4
  • Norbert Waldoefner
    • 2
  • Roland Felix
    • 3
  • Andreas Jordan
    • 2
  1. 1.Department of NeurosurgeryBundeswehrkrankenhausBerlinGermany
  2. 2.MagForce Nanotechnologies AGBerlinGermany
  3. 3.Department of Radiation Medicine CVKCharité-University MedicineBerlinGermany
  4. 4.Department of Neuropathology, CVKCharité-University MedicineBerlinGermany

Personalised recommendations