Journal of Neuro-Oncology

, Volume 80, Issue 3, pp 261–274

Increased Expression of Thymidylate Synthetase (TS), Ubiquitin Specific Protease 10 (USP10) and Survivin is Associated with Poor Survival in Glioblastoma Multiforme (GBM)

  • Jessica M. Grunda
  • L. Burton Nabors
  • Cheryl A. Palmer
  • David C. Chhieng
  • Adam Steg
  • Tom Mikkelsen
  • Robert B. Diasio
  • Kui Zhang
  • David Allison
  • William E. Grizzle
  • Wenquan Wang
  • G. Yancey Gillespie
  • Martin R. Johnson
Laboratory Investigation

Abstract

Background

The limited success of empirically designed treatment paradigms for patients diagnosed with glioblastoma multiforme (GBM) emphasizes the need for rationally designed treatment strategies based on the molecular profile of tumor samples and their correlation to clinical parameters.

Methods

In the current study, we utilize a novel real-time quantitative low density array (RTQ-LDA) to identify differentially expressed genes in de novo GBM tissues obtained from patients with distinctly different clinical outcomes. Total RNA was isolated from a cohort of 21 GBM specimens obtained from patients with either good (long-term survival (LTS) >36 months post surgery, n = 8) or poor (died of the disease (DOD) <24 months post surgery, n = 13) prognosis. Non-neoplastic brain tissue (n = 5) was obtained from patients who underwent surgery for refractory epilepsy. Demographic data was assessed for correlation with survival using Cox proportional hazards models. Sufficient RNA was available to use RTQ-LDA to quantify the expression of 93 independent genes in 5␣LTS, 4 DOD, and 5 non-neoplastic brain samples. The eight differentially expressed genes identified by RTQ-LDA in LTS versus DOD (P ≤ 0.050) were subsequently quantified in all 21 GBM samples by real-time quantitative PCR (RTQ).

Results

A correlation between younger patients and good prognosis was demonstrated (P ≤ 0.05). The combination of RTQ-LDA and RTQ identified thymidylate synthetase (TS), ubiquitin specific protease 10 (USP10), and survivin as significantly over-expressed (P ≤ 0.050) in DOD compared to LTS patients. Ribonucleotide reductase subunit M2 (RRM2) was identified as tumor-specific, but not associated with survival.

Conclusions

Taken collectively, TS, USP10, survivin and RRM2 may be useful as prognostic indicators and/or in the development of rationally designed treatment protocols.

Keywords

Glioblastoma multiforme Glioma Low density array Real-time quantitative PCR Ribonucleotide reductase subunit M2 Survival Survivin Thymidylate synthetase Ubiquitin specific protease 10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McLendon RE, Halperin EC (2003) Is the long-term survival of patients with intracranial glioblastoma multiforme overstated? Cancer 98(8):1745–1748PubMedCrossRefGoogle Scholar
  2. 2.
    Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15(11):1311–1333PubMedCrossRefGoogle Scholar
  3. 3.
    Fazeny-Dorner B, Gyries A, Rossler K, Ungersbock K, Czech T, Budinsky A, Killer M, Dieckmann K, Piribauer M, Baumgartner G, Prayer D, Veitl M, Muhm M, Marosi C (2003) Survival improvement in patients with glioblastoma multiforme during the last 20 years in a single tertiary-care center. Wien Klin Wochenschr 115(11):389–397PubMedCrossRefGoogle Scholar
  4. 4.
    Zhou YH, Tan F, Hess KR, Yung WK (2003) The expression of PAX6, PTEN, vascular endothelial growth factor, and epidermal growth factor receptor in gliomas: relationship to tumor grade and survival. Clin Cancer Res 9(9):3369–3375PubMedGoogle Scholar
  5. 5.
    Chakravarti A, Noll E, Black PM, Finkelstein DF, Finkelstein DM, Dyson NJ, Loeffler JS (2002) Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J Clin Oncol 20(4):1063–1068PubMedCrossRefGoogle Scholar
  6. 6.
    Shai R, Shi T, Kremen TJ, Horvath S, Liau LM, Cloughesy TF, Mischel PS, Nelson SF (2003) Gene expression profiling identifies molecular subtypes of gliomas. Oncogene 22(31):4918–4923PubMedCrossRefGoogle Scholar
  7. 7.
    van den Boom J, Wolter M, Kuick R, Misek DE, Youkilis AS, Wechsler DS, Sommer C, Reifenberger G, Hanash SM (2003) Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. Am J Pathol 163(3):1033–1043PubMedGoogle Scholar
  8. 8.
    Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd C, Pohl U, Hartmann C, McLaughlin ME, Batchelor TT, Black PM, von Deimling A, Pomeroy SL, Golub TR, Louis DN (2003) Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 63(7):1602–1607PubMedGoogle Scholar
  9. 9.
    Fuller GN, Hess KR, Rhee CH, Yung WK, Sawaya RA, Bruner JM, Zhang W (2002) Molecular classification of human diffuse gliomas by multidimensional scaling analysis of gene expression profiles parallels morphology-based classification, correlates with survival, and reveals clinically-relevant novel glioma subsets. Brain Pathol 12(1):108–116PubMedCrossRefGoogle Scholar
  10. 10.
    Sallinen SL, Sallinen PK, Haapasalo HK, Helin HJ, Helen PT, Schraml P, Kallioniemi OP, Kononen J (2000) Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res 60(23):6617–6622PubMedGoogle Scholar
  11. 11.
    Burton EC, Lamborn KR, Forsyth P, Scott J, O’Campo J, Uyehara-Lock J, Prados M, Berger M, Passe S, Uhm J, O’Neill BP, Jenkins RB, Aldape KD (2002) Aberrant p53, mdm2, and proliferation differ in glioblastomas from long-term compared with typical survivors. Clin Cancer Res 8(1):180–187PubMedGoogle Scholar
  12. 12.
    Davis FG, Freels S, Grutsch J, Barlas S, Brem S (1998) Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on Surveillance, Epidemiology, and End Results (SEER) data, 1973–1991. J Neurosurg 88(1):1–10PubMedGoogle Scholar
  13. 13.
    Deb P, Sharma MC, Mahapatra AK, Agarwal D, Sarkar C (2005) Glioblastoma multiforme with long term survival. Neurol India 53(3):329–332PubMedCrossRefGoogle Scholar
  14. 14.
    Scott JN, Rewcastle NB, Brasher PM, Fulton D, MacKinnon JA, Hamilton M, Cairncross JG, Forsyth P (1999) Which glioblastoma multiforme patient will become a long-term survivor? A population-based study. Ann Neurol 46(2):183–188PubMedCrossRefGoogle Scholar
  15. 15.
    Senger D, Cairncross JG, Forsyth PA (2003) Long-term survivors of glioblastoma: statistical aberration or important unrecognized molecular subtype? Cancer J 9(3):214–221PubMedCrossRefGoogle Scholar
  16. 16.
    Valery CA, Seilhean D, Boyer O, Marro B, Hauw JJ, Kemeny JL, Marsault C, Philippon J, Klatzmann D (2002) Long-term survival after gene therapy for a recurrent glioblastoma. Neurology 58(7):1109–1112PubMedGoogle Scholar
  17. 17.
    Blanquicett C, Johnson MR, Heslin M, Diasio RB (2002) Housekeeping gene variability in normal and carcinomatous colorectal and liver tissues: applications in pharmacogenomic gene expression studies. Anal Biochem 303(2):209–214PubMedCrossRefGoogle Scholar
  18. 18.
    Johnson MR, Wang K, Smith JB, Heslin MJ, Diasio RB (2000) Quantitation of dihydropyrimidine dehydrogenase expression by real-time reverse transcription polymerase chain reaction. Anal Biochem 278(2):175–184PubMedCrossRefGoogle Scholar
  19. 19.
    Steg A, Wang W, Blanquicett C, Grunda JM, Eltoum IA, Wang K, Buchsbaum DJ, Vickers SM, Russo S, Diasio RB, Frost AR, LoBuglio AF, Grizzle WE, Johnson MR (2006) Multiple gene expression analyses in paraffin-embedded tissues by TaqMan low-density array: application to hedgehog and Wnt pathway analysis in ovarian endometrioid adenocarcinoma. J Mol Diagn 8(1):76–83PubMedGoogle Scholar
  20. 20.
    Harrington DP, Felming TR (1982) A class of rand test procedures for censored survival data. Biometrika 69:553–566CrossRefGoogle Scholar
  21. 21.
    Lee CK, Allison DB, Brand J, Weindruch R, Prolla TA (2002) Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts. Proc Natl Acad Sci USA 99(23):14988–14993PubMedCrossRefGoogle Scholar
  22. 22.
    Zar JH (1999) Biostatistical analysis, 4th ed. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  23. 23.
    Allison DB, Gadbury G, Heo M, Fernandez J, Lee C, Prolla TA, Weindruch R (2002) A mixture model approach for the analysis of microarray gene expression data. Comput Stat Data Anal (39):1–20Google Scholar
  24. 24.
    Hatfield GW, Hung SP, Baldi P (2003) Differential analysis of DNA microarray gene expression data. Mol Microbiol 47(4):871–877PubMedCrossRefGoogle Scholar
  25. 25.
    Klecka WR (1980) Discriminant analysis. Sage University Paper Series on Quantitative Applications in the Social Sciences Series No. 07-019Google Scholar
  26. 26.
    Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugenic (7):179–188Google Scholar
  27. 27.
    Ambroise C, McLachlan GJ (2002) Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci USA 99(10):6562–6566PubMedCrossRefGoogle Scholar
  28. 28.
    Lamborn KR, Chang SM, Prados MD (2004) Prognostic factors for survival of patients with glioblastoma: recursive partitioning analysis. Neuro-oncology 6(3):227–235PubMedCrossRefGoogle Scholar
  29. 29.
    Altieri DC (2003) Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 22(53):8581–8589PubMedCrossRefGoogle Scholar
  30. 30.
    Yamamoto T, Tanigawa N (2001) The role of survivin as a new target of diagnosis and treatment in human cancer. Med Electron Microsci 34(4):207–212CrossRefGoogle Scholar
  31. 31.
    Kajiwara Y, Yamasaki F, Hama S, Yahara K, Yoshioka H, Sugiyama K, Arita K, Kurisu K (2003) Expression of survivin in astrocytic tumors: correlation with malignant grade and prognosis. Cancer 97(4):1077–1083PubMedCrossRefGoogle Scholar
  32. 32.
    Zaffaroni N, Pennati M, Daidone MG (2005) Survivin as a target for new anticancer interventions. J Cell Mol Med 9(2):360–372PubMedGoogle Scholar
  33. 33.
    Fulda S, Debatin KM (2004) Sensitization for anticancer drug-induced apoptosis by the chemopreventive agent resveratrol. Oncogene 23(40):6702–6711Google Scholar
  34. 34.
    Zhang T, Fields JZ, Ehrlich SM, Boman BM (2004) The chemopreventive agent sulindac attenuates expression of the antiapoptotic protein survivin in colorectal carcinoma cells. J␣Pharmacol Exp Ther 308(2):434–437PubMedCrossRefGoogle Scholar
  35. 35.
    Chu E, Callender MA, Farrell MP, Schmitz JC (2003) Thymidylate synthase inhibitors as anticancer agents: from bench to bedside. Cancer Chemother Pharmacol 52(Suppl 1):S80–S89PubMedCrossRefGoogle Scholar
  36. 36.
    Saga Y, Suzuki M, Mizukami H, Urabe M, Fukushima M, Ozawa K, Sato I (2002) Enhanced expression of thymidylate synthase mediates resistance of uterine cervical cancer cells to radiation. Oncology 63(2):185–191PubMedCrossRefGoogle Scholar
  37. 37.
    Yamachika T, Nakanishi H, Inada K, Tsukamoto T, Kato T, Fukushima M, Inoue M, Tatematsu M (1998) A new prognostic factor for colorectal carcinoma, thymidylate synthase, and its therapeutic significance. Cancer 82(1):70–77PubMedCrossRefGoogle Scholar
  38. 38.
    Nomura T, Nakagawa M, Fujita Y, Hanada T, Mimata H, Nomura Y (2002) Clinical significance of thymidylate synthase expression in bladder cancer. Int J Urol 9(7):368–376PubMedCrossRefGoogle Scholar
  39. 39.
    Suzuki M, Ohwada M, Tamada T, Tsuru S (1994) Thymidylate synthase activity as a prognostic factor in ovarian cancer. Oncology 51(4):334–338PubMedCrossRefGoogle Scholar
  40. 40.
    Menei P, Capelle L, Guyotat J, Fuentes S, Assaker R, Bataille B, Francois P, Dorwling-Carter D, Paquis P, Bauchet L, Parker F, Sabatier J, Faisant N, Benoit JP (2005) Local and sustained delivery of 5-fluorouracil from biodegradable microspheres for the radiosensitization of malignant glioma: a randomized phase II trial. Neurosurgery 56(2):242–248 (discussion 242–248)PubMedCrossRefGoogle Scholar
  41. 41.
    Wang ML, Yung WK, Royce ME, Schomer DF, Theriault RL (2001) Capecitabine for 5-fluorouracil-resistant brain metastases from breast cancer. Am J Clin Oncol 24(4):421–424PubMedCrossRefGoogle Scholar
  42. 42.
    Blanquicett C, Buchsbaum DJ, Saif MW, Eloubeidi M, Vickers SM, Chhieng DC, Carpenter MD, Sellers JC, Russo S, Diasio RB, Johnson MR (2005) Antitumor efficacy of capecitabine and celecoxib in irradiated and lead shielded contralateral human BxPC-3 pancreatic cancer xenografts: clinical implications of abscopal effects in a metastatic model. Clin Cancer Res (submitted)Google Scholar
  43. 43.
    Blanquicett C, Gillespie GY, Nabors LB, Miller CR, Bharara S, Buchsbaum DJ, Diasio RB, Johnson MR (2002) Induction of thymidine phosphorylase in both irradiated and shielded, contralateral human U87MG glioma xenografts: implications for a dual modality treatment using capecitabine and irradiation. Mol Cancer Ther 1(12):1139–1145PubMedGoogle Scholar
  44. 44.
    Newman AJ, Fiveash J, Rosenfeld S, Johnson M, Diasio R, Wang W, Cockrell-Donohue A, Nabors LB (2004) A phase I study of capecitabine, concurrent radiotherapy (RT) for patients with newly diagnosed glioblastoma multiforme (GBM). In: Grunberg SM, Gary A, Whippen D (eds) Proc Am Soc Clin Oncol, New Orleans LA, June 5–8 2004. Lisa Greaves, American Society of Clinical Oncology, Alexandria, 2004, 116 ppGoogle Scholar
  45. 45.
    Benepal TS, Judson I (2005) ZD9331: discovery to clinical development. Anticancer Drugs 16(1):1–9PubMedCrossRefGoogle Scholar
  46. 46.
    Roos-Mattjus P, Sistonen L (2004) The ubiquitin-proteasome pathway. Ann Med 36(4):285–295PubMedCrossRefGoogle Scholar
  47. 47.
    Amerik AY, Hochstrasser M (2004) Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 1695(1–3):189–207PubMedGoogle Scholar
  48. 48.
    Doelling JH, Yan N, Kurepa J, Walker J, Vierstra RD (2001) The ubiquitin-specific protease UBP14 is essential for early␣embryo development in Arabidopsis thaliana. Plant J␣27(5):393–405PubMedCrossRefGoogle Scholar
  49. 49.
    Nijman SM, Huang TT, Dirac AM, Brummelkamp TR, Kerkhoven RM, D’Andrea AD, Bernards R (2005) The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell 17(3):331–339PubMedCrossRefGoogle Scholar
  50. 50.
    Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J, Gu W (2002) Deubiquitination of p53 by HAUSP is an important␣pathway for p53 stabilization. Nature 416(6881): 648–653PubMedCrossRefGoogle Scholar
  51. 51.
    Graner E, Tang D, Rossi S, Baron A, Migita T, Weinstein LJ, Lechpammer M, Huesken D, Zimmermann J, Signoretti S, Loda M (2004) The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell 5(3):253–261PubMedCrossRefGoogle Scholar
  52. 52.
    Voorhees PM, Dees EC, O’Neil B, Orlowski RZ (2003) The proteasome as a target for cancer therapy. Clin Cancer Res 9(17):6316–6325PubMedGoogle Scholar
  53. 53.
    Rajkumar SV, Richardson PG, Hideshima T, Anderson KC (2005) Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 23(3):630–639PubMedCrossRefGoogle Scholar
  54. 54.
    Burton TR, Kashour T, Wright JA, Amara FM (2003) Cellular signaling pathways affect the function of ribonucleotide reductase mRNA binding proteins: mRNA stabilization, drug resistance, and malignancy (Review). Int J Oncol 22(1):21–31PubMedGoogle Scholar
  55. 55.
    Lee Y, Vassilakos A, Feng N, Lam V, Xie H, Wang M, Jin H, Xiong K, Liu C, Wright J, Young A (2003) GTI-2040, an antisense agent targeting the small subunit component (R2) of human ribonucleotide reductase, shows potent antitumor activity against a variety of tumors. Cancer Res 63(11):2802–2811PubMedGoogle Scholar
  56. 56.
    Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE (2004) RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma␣chemosensitivity to gemcitabine. Oncogene 23(8): 1539–1548PubMedCrossRefGoogle Scholar
  57. 57.
    Jung CP, Motwani MV, Schwartz GK (2001) Flavopiridol increases sensitization to gemcitabine in human gastrointestinal cancer cell lines and correlates with down-regulation of ribonucleotide reductase M2 subunit. Clin Cancer Res 7(8):2527–2536PubMedGoogle Scholar
  58. 58.
    Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn M, Brandes AA, Cairncross JG, Lacombe D, Mirimanoff RO (2004) Concomitant and adjuvant temozolomide (TMZ) and radiotherapy (RT) for newly diagnosed glioblastoma multiforme (GBM). Conclusive results of a randomized phase III trail by the EORTC Brain & RT Groups and NCIC Clinical Trials Group. In: Grunberg SM, Gary A, Whippen D (eds) Proc Am Soc Clin Oncol, New Orleans, Louisiana, June 5–8 2004. Lisa Greaves, American Society of Clinical Oncology, Alexandria, 2004, p 1Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Jessica M. Grunda
    • 1
  • L. Burton Nabors
    • 2
  • Cheryl A. Palmer
    • 5
  • David C. Chhieng
    • 4
  • Adam Steg
    • 1
  • Tom Mikkelsen
    • 8
  • Robert B. Diasio
    • 1
  • Kui Zhang
    • 6
  • David Allison
    • 6
  • William E. Grizzle
    • 4
  • Wenquan Wang
    • 7
  • G. Yancey Gillespie
    • 3
  • Martin R. Johnson
    • 1
    • 9
  1. 1.Departments of Pharmacology and Toxicology, Division of Clinical PharmacologyUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of Neurology, Division of Neuro-oncologyUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Department of Surgery, Division of NeurosurgeryUniversity of Alabama at BirminghamBirminghamUSA
  4. 4.Department of PathologyUniversity of Alabama at BirminghamBirminghamUSA
  5. 5.Department of Pathology, Division of NeuropathologyUniversity of Alabama at BirminghamBirminghamUSA
  6. 6.Department of BiostatisticsUniversity of Alabama at BirminghamBirminghamUSA
  7. 7.Department of Biostatistics, Biostatistics and Bioinformatics UnitUniversity of Alabama at BirminghamBirminghamUSA
  8. 8.Department of NeurosurgeryHenry Ford Hospital, Brain Tumor CenterDetroitUSA
  9. 9.Department of Clinical PharmacologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations