Advertisement

Journal of Neuro-Oncology

, Volume 79, Issue 1, pp 19–30 | Cite as

Angiogenic patterns and their quantitation in high grade astrocytic tumors

  • Suash Sharma
  • Mehar C. Sharma
  • Deepak Kumar Gupta
  • Chitra Sarkar
Laboratory Investigation

Summary

Background

The objectives of this study on high grade astrocytic tumors were (i) to establish differences, if any, between grades III & IV tumors among angiogenic parameters, both qualitative and quantitative, and (ii) to correlate angiogenic parameters with proliferation indices, namely T2a and MIB1 labeling indices.

Design

Twenty nine consecutive cases of WHO grades III (11) and IV (18) astrocytic tumors diagnosed in the year-2004 were studied, using H&E and CD34, MIB1 and T2a immunostaining by streptavidin biotin technique. Angiogenic patterns were studied and parameters quantitated using Image Pro Plus software (four hotspots) on CD34 immunostained sections to determine intratumoral microvessel density (iMVD), microvascular area (MVA), aspect, mean diameter (MD) and fractal dimension (FD).

Results

Main angiogenic patterns of capillary (18) and glomeruloid (9) types were best developed in glioblastomas. Statistically significant differences (P<0.05) were seen between grades III and IV in iMVD, aspect, MD and FD, but not in angiogenic patterns or MVA (P = 0.27). Statistically significant differences (P<0.05) were seen between glioblastomas with glomeruloid vs. capillary types in iMVD and FD, but not in MVA, aspect and mean vessel diameter. T2a values correlated with MIB1 labeling indices (R = 0.965, P<0.001). Intratumoral endothelial MIB1 LI was significantly higher in grade IV as compared to grade III, but did not correlate with angiogenic parameters. No correlation of angiogenic patterns and proliferation indices was noted (R = −0.221, P = 0.26). Limited follow up data showed all recurrent grade IV tumors to be of glomeruloid type.

Conclusion

Increased angiogenesis in grade IV, as compared to grade III, astrocytic tumors is characterized by an increased number/density of vessels: an increase in vessels characterized by disproportionate lengthening and likely associated with the infiltrative properties of the tumors; and an increase in pliable, irregularly shaped or structured vessels. In addition, there is a greater frequency of glomeruloid structures indicating inadequate directional migration of the newly formed vessels. The lack of correlation of these angiogenesis parameters with the MIB1 and T2a proliferation indices reflects the complexity of angiogenesis parameters in high grade gliomas. Further studies are needed to determine the usefulness of the angiogenic parameters in the improved diagnosis (grading) and prognosis of astrocytic tumors.

Keywords

angiogenic patterns astrocytoma grade III astrocytoma grade IV glioblastoma intratumoral microvascular density MIB1 topoisomerase II alpha 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We sincerely thank the Council of Scientific and Industrial Research, Pusa, New Delhi for supporting this research endeavor. We also thank Mr. Rajesh and Ms. Kiran from AIIMS for technical assistance, Mr. Rajvir (AIIMS) and Mr. Sanjay (TMC) for statistical analyses, Dr. Deepak Gupta from Neurosurgery (AIIMS) for providing follow up data, and Dr. Prabal Deb for moral support.

References

  1. 1.
    Brem S The role of vascular proliferation in the growth of brain tumors Clin Neurosurg 1976; 23:440–453PubMedGoogle Scholar
  2. 2.
    Korkolopoulou P, Patsouris E, Kavantzas N, Konstantinidou AE, Christodoulou P, Thomas-Tsagli E, Pananikolaou A, Eftychiadis C, Pavlopoulos PM, Angelidakis D, Rologis D, Davaris P Prognostic implications of microvessel morphometry in diffuse astrocytic neoplasms Neuropathol Appl Neurobiol 2002; 28:57–66PubMedCrossRefGoogle Scholar
  3. 3.
    Plate KH, Breier G, Risau W Molecular mechanisms of developmental and tumor angiogenesis Brain Pathol 1994; 4:207–218PubMedCrossRefGoogle Scholar
  4. 4.
    Kleihues P, Cavenee W 2000 Pathology and Genetics of Tumors of Nervous System. World Health Organization Classification of Tumors IARC Press Lyon pp 10–54Google Scholar
  5. 5.
    Kleihues P, Burger PC, Scheithauer BW The new WHO classification of brain tumors Brain Pathol 1993; 3:255–268PubMedCrossRefGoogle Scholar
  6. 6.
    Abdulrauf SL, Evardsen K, Ho KL, Yang XY, Rock JP, Rosenblum ML Vascular endothelial growth factor expression and vascular density as prognostic markers of survival in patients with low-grade astrocytoma J Neurosurg 1998; 88:513–520PubMedCrossRefGoogle Scholar
  7. 7.
    Leon SP, Folkerth RD, Black PM Microvessel density is a prognostic indicator for patients with astroglial brain tumors Cancer 1996; 77:362–372PubMedCrossRefGoogle Scholar
  8. 8.
    Folkerth RD Descriptive analysis and quantification of angiogenesis in human brain tumors J Neurooncol 2000; 50:165–172PubMedCrossRefGoogle Scholar
  9. 9.
    Birner P, Piribauer M, Fischer I, Gatterbauer B, Marosi C, Ambros PF, Ambros IM, Bredel M, Oberhuber G, Rossler K, Budka H, Harris AL, Hainfellner JA Vascular patterns in glioblastoma influence clinical outcome and associate with variable expression of angiogenic proteins: evidence for distinct angiogenic subtypes Brain Pathol 2003; 13:133–143PubMedCrossRefGoogle Scholar
  10. 10.
    Taniguchi K, Wakabayashi T, Yoshida T et al. Immunohistochemical staining of DNA topoisomerase II alpha in human gliomas J Neurosurg 1999; 91:477–482PubMedGoogle Scholar
  11. 11.
    Park S-H, Suh Y-L Expression of cyclin A and topoisomerase II alpha of oligodendrogliomas is correlated with tumor grade, MIB-1 labelling index and survival Histopathology 2003; 42:395–402PubMedCrossRefGoogle Scholar
  12. 12.
    Weidner N, Semple JP, Welch WR, Folkman J Tumour angiogenesis and metastasis – correlation in invasive breast carcinoma. N Eng J Med 1991; 324:1–8CrossRefGoogle Scholar
  13. 13.
    Sharma S, Sharma MC, Sarkar C Morphology of angiogenesis in human cancer: a conceptual overview, histoprognostic perspective and significance of neoangiogenesis Histopathology 2005; 46 : 481–489PubMedCrossRefGoogle Scholar
  14. 14.
    Nelson DF, Curran WJ, Scott C, Nelson JS, Weinstein AS, Ahmad K Constine LS, Murray K, Powlis WD, Mohiuddin M, Fischbach J Hyperfractionated radiation therapy and bischlorethyl nitrosurea in the treatment of malignant glioma: possible advantage observed at 72.0 Gy in 1.2 BID fractions: report of the radiation therapy oncology group protocol 8302 Int J Radiat Oncol Biol Phys 1993; 25:193–207PubMedGoogle Scholar
  15. 15.
    Curran WJ, Scott CB, Horton J, Nelson JS, Weinstein AS, Flschbach AJ Chang CH, Rotman M, Asbell SO, Krisch RE, Nelson DF. Recursive partitioning analysisof prognostic factors in three radiation therapy oncology group trials J Natl Cancer Inst 1993; 85:704–710PubMedCrossRefGoogle Scholar
  16. 16.
    Winger MJ, McDonald DR, Cairncross JG Supratentorial anaplastic gliomas in adults: the prognostic importance of extent of resection and prior low-grade glioma J Neurosurg 1989; 71:487–493PubMedGoogle Scholar
  17. 17.
    Weidner N The importance of tumour angiogenesis. The evidence continues to grow Am J Clin Pathol 2004; 122:675–677PubMedCrossRefGoogle Scholar
  18. 18.
    Uzzan B, Nicolas P, Cucherat M, Perret GY Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis Cancer Res 2004; 64:2941–2955PubMedCrossRefGoogle Scholar
  19. 19.
    Macchiarini P, Fontaini G, Hardin MJ, Squartini F, Angeletti CA. Relation of neovasculature to metastasis of non-small lung cancer Lancet 1992; 340:145–146PubMedCrossRefGoogle Scholar
  20. 20.
    Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J Tumour angiogenesis correlates with metastasis in invasive prostate carcinoma Am J Pathol 1993; 143:401–409PubMedGoogle Scholar
  21. 21.
    Korkolopoulou P, Apostolidou E, Pavlopoulos PM, Kavantzas N, Vyniou N, Thymara I, Terpos E, Patsouris E, Yataganas X, Davaris P Prognostic evaluation of the microvascular network in myelodysplastic syndromes Leukemia 2001; 15:1369–1376PubMedCrossRefGoogle Scholar
  22. 22.
    Korkolopoulou P, Viniou N, Kavantzas N, Patsouris E, Thymara I, Pavlopoulos PM, Terpos E, Stamatopoulos K, Plata E, Anargyrou K, Androulaki A, Davaris P, Yataganas X Clinicopathologic correlations of bone marrow angiogenesis in chronic myeloid leukemia: a morphometric study Leukemia 2003; 17:89–97PubMedCrossRefGoogle Scholar
  23. 23.
    Srivastava A, Laidler P, Davies R, Horgan K, Hughes LE The prognostic significance of tumour vascularity in intermediate-thickness (0.76–4.0 mm thick) skin melanoma Am J Pathol 1986; 133:419–423Google Scholar
  24. 24.
    Wakui S, Furusato M, Itoh T Sasaki H, Akiyama A, Kinoshita I, Asano K, Tokuda T, Aizawa S, Ushigome S Tumour angiogenesis in prostate carcinoma with and without bone marrow metastasis: a morphometric study J Pathol 1992; 168:257–262PubMedCrossRefGoogle Scholar
  25. 25.
    Wesseling P, Ruiter DJ, Burger PC Angiogenesis in brain tumors; pathobiological and clinical aspects J Neuro-oncol 1997; 32:253–265CrossRefGoogle Scholar
  26. 26.
    Sharma S, Karak AK, Sarker C, Gomathy G, Banerji AK, Schmitt HP A grading study of gliomas using computer aided malignancy classification and histologic morphometry J Neurooncol 1996; 27:75–85PubMedCrossRefGoogle Scholar
  27. 27.
    Wesseling P, Van Der Laak J, De Leeuw H, Ruiter DJ, Burger PC Quantitative immunohistochemical analysis of the microvasculature in untreated human glioblastoma multiforme J Neurosurg 1994; 81:902–909PubMedCrossRefGoogle Scholar
  28. 28.
    Schmitt HP, Oberwittler C Computer aided classification of malignancy in astrocytomas: II. The value of categorically evaluating histologic and non-histologic features for a numerical classifier Analyt Cell Pathol 1992; 4:409–419Google Scholar
  29. 29.
    Sharma S, Karak AK, Singh R, Mehta VS, Sarkar C, Schmitt HP A correlative study of gliomas using in vivo bromodeoxyuridine labeling index and computer aided malignancy grading Path Oncol Res 1999; 5:134–141CrossRefGoogle Scholar
  30. 30.
    Wesseling P, Vandersteenhoven JJ, Downey BT, Ruiter DJ, Burger PC Cellular components of microvascular proliferation in human glial and metastatic brain neoplasms. A light microscopic and immunohistochemical study of formalin-fixed, routinely processed material Acta Neuropathol 1993; 85:508–514PubMedCrossRefGoogle Scholar
  31. 31.
    Stockhammer G, Obwegeser A, Kostron H, Schumacher P, Muigg A, Felber S, Maier H, Slavc I, Gunsilius E, Gastl G Vascular endothelial growth factor (VEGF) is elevated in brain tumor cysts and correlates with tumor progression Acta Neuropathol 2000; 100:101–105PubMedCrossRefGoogle Scholar
  32. 32.
    Gesundheit B, Klement G, Senger C, Kerbel R, Kieran M, Baruchel S, Becker L Differences in vasculature between pilocytic and anaplastic astrocytomas of childhood Med Pediatr Oncol 2003; 41:516–526PubMedCrossRefGoogle Scholar
  33. 33.
    Fischer I, Gagner JP, Law M, Newcomb EW, Zagzag D Angiogenesis in gliomas: biology and molecular pathophysiology Brain Pathol 2005; 15:297–310PubMedCrossRefGoogle Scholar
  34. 34.
    Schiffer D, Chio A, Mauro GA, Migheli A, Vigliani MC The vascular response to tumor infiltration in malignant gliomas Acta Neuropathol 1989; 77:369–378PubMedCrossRefGoogle Scholar
  35. 35.
    Wesseling P, Van Der Laak J, Link M, Teepen H, Ruiter DJ Quantitative analysis of microvascular changes in diffuse astrocytic neoplasms with increasing grade of malignancy Hum Pathol 1998; 29:352–358PubMedCrossRefGoogle Scholar
  36. 36.
    Dales JP, Garcia S, Carpentier S, Andrac L, Ramuz O, Lavaut MN, Allasia C, Bonnier P, Taranger-Charpin C Prediction of metastasis risk (11 year follow up) using VEGF-R1, VEGF-R2, Tie-2/Tek and CD105 expression in breast cancer (n=905) Br J Cancer 2004; 90:1216–1221PubMedCrossRefGoogle Scholar
  37. 37.
    Watt P, Hickson ID Structure and function of type II DNA topoisomerases Biochem J 1994; 303:681–695PubMedGoogle Scholar
  38. 38.
    Schneider E, Hsiang Y-H, Liu LF DNA topoisomerases as anti-cancer drug targets Adv Pharmacol 1990; 21:149–183PubMedCrossRefGoogle Scholar
  39. 39.
    Konstantinidou AE, Patsouris E, Korkolopoulou P, Kavantzas N, Mahera H, Davaris P DNA topoisomerase II alpha expression correlates with cell proliferation but not with recurrence in intracranial meningiomas Histopathology 2001; 39:402–408PubMedCrossRefGoogle Scholar
  40. 40.
    Wesseling P, Van Der Sanden G, Van Der Laak J, Teepen H, Verbeek A, De Wilde P: Prognostic value of microvascular parameters in diffuse astrocytic neoplasms (Abstract). J Neuropathol Exp Neurol 58: 535, 1999Google Scholar
  41. 41.
    Erdem O, Dursun A, Coskun U, Gunel N The prognostic value of p53 and c-erbB-2 expression, proliferative activity and angiogenesis in node-negative breast carcinoma Tumori 2005; 91:46–52PubMedGoogle Scholar
  42. 42.
    Xu JL, Lai R, Kinoshita T, Nakashima N, Nagasaka T Proliferation, apoptosis, and intratumoral vascularity in multiple myeloma: correlation with the clinical stage and cytological grade J Clin Pathol 2002 Jul 55(7):530–534Google Scholar
  43. 43.
    Xiao L, Tang LD Significance of proliferating cell nuclear antigen (PCNA) index and microvessel density (MVD) in endometrial carcinoma Ai Zheng 2005; 24:19–22PubMedGoogle Scholar
  44. 44.
    Jonjic N, Zamolo G, Stifter S, Fuckar D, Gruber F, Sasso F, Rizzardi C, Melato M Cytomorphological variations, proliferation and angiogenesis in the prognosis of cutaneous melanoma Clin Exp Dermatol. 2003; 28:310–314PubMedCrossRefGoogle Scholar
  45. 45.
    Tanaka F, Otake Y, Yanagihara K, Kawano Y, Miyahara R, Li M, Ishikawa S, Wada H Correlation between apoptotic index and angiogenesis in non-small cell lung cancer: comparison between CD105 and CD34 as a marker of angiogenesis Lung Cancer 2003; 39:289–296PubMedCrossRefGoogle Scholar
  46. 46.
    Diaz-Rubio JL, Duarte-Rojo A, Saqui-Salces M, Gamboa-Dominguez A, Robles-Diaz G Cellular proliferative fraction measured with topoisomerase IIalpha predicts malignancy in endocrine pancreatic tumors Arch Pathol Lab Med 2004; 128:426–429PubMedGoogle Scholar
  47. 47.
    Juric G, Zarkovic N, Nola M, Tillian M, Jukic S The value of cell proliferation and angiogenesis in the prognostic assessment of ovarian granulosa cell tumors Tumori 2001; 87:47–53PubMedGoogle Scholar
  48. 48.
    Vidal S, Horvath E, Kovacs K, Lloyd RV, Scheithauer BW Microvascular structural entropy: a novel approach to assess angiogenesis in pituitary tumors Endocr Pathol 2003; 14:239–247PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Suash Sharma
    • 1
  • Mehar C. Sharma
    • 1
  • Deepak Kumar Gupta
    • 2
  • Chitra Sarkar
    • 1
    • 3
  1. 1.Department of PathologyAll India Institute of Medical SciencesNew DelhiIndia
  2. 2.Department of NeurosurgeryAll India Institute of Medical SciencesNew DelhiIndia
  3. 3.Department of PathologyAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations