Journal of Neuro-Oncology

, Volume 78, Issue 2, pp 179–185 | Cite as

Extension of paralimbic low grade gliomas: toward an anatomical classification based on white matter invasion patterns

  • Emmanuel Mandonnet
  • Laurent Capelle
  • Hugues DuffauEmail author
Clinical–patient studies



Low grade gliomas are both proliferative and diffusive tumors, as recently modelized. When proliferation is predominant, the tumor is rather bulky and its main locations are the supplementary motor area and the paralimbic system. Diffusion occurs preferentially along white matter tracts. Recent anatomo-functional studies, performed both in vitro and in vivo, have described the fiber tracts centered around the insula. We thus propose to analyze the extension of paralimbic low grade gliomas in terms of invaded subcortical pathways.


We retrospectively reviewed the MRIs of patients followed for a WHO grade II glioma at the Salpêtrière Hospital between 1991 and 2003. We selected patients with tumors centered on the insula and extending in temporal and frontal lobes (Type 2b-2c-3 of Yasargil’s classification). We then analyzed on FLAIR sequences the extension (tracked on successive examinations before any treatment) along two main fasciculi in that area: the uncinate and arcuate fasciculi.


A total of 40 patients fulfilled the inclusion criteria. The uncinate fasiculus was invaded in 28 cases, the arcuate fasciculus in 9 cases, and both fasciculi in 3 cases. Longitudinal follow-up was available in 16 cases, and confirmed the preferential extension along these fasciculi.


This kinetic analysis of extension of paralimbic low grade gliomas confirms that these tumors spread along distinct subcortical fasciculi. Due to the functional role of these pathways, this classification could be useful to elaborate therapeutic strategy (prognosis index, pre- and intra-operative neuropsychological testing, functional outcome).


anatomo-functional connectivity glioma invasion low grade glioma paralimbic system subcortical pathway 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Swanson KR, Bridge C, Murray JD, Alvord EC Jr, Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion J Neurol Sci 216: 1–10, 2003PubMedCrossRefGoogle Scholar
  2. 2.
    Swanson KR, Alvord EC Jr, Murray JD:, A quantitative model for differential motility of gliomas in grey and white matterCell Prolif33: 317–329, 2000PubMedCrossRefGoogle Scholar
  3. 3.
    Burgess PK, Kulesa PM, Murray JD, Alvord EC Jr, The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomasJ Neuropathol Exp Neurol56: 704–713, 1997PubMedCrossRefGoogle Scholar
  4. 4.
    Tracqui P, Cruywagen GC, Woodward DE, Bartoo GT, Murray JD, Alvord EC Jr, A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growthCell Prolif28: 17–31, 1995PubMedCrossRefGoogle Scholar
  5. 5.
    Woodward DE, Cook J, Tracqui P, Cruywagen GC, Murray JD, Alvord EC Jr, A mathematical model of glioma growth the effect of extent of surgical resection Cell Prolif 29: 269–288, 1996PubMedCrossRefGoogle Scholar
  6. 6.
    Swanson KR, Alvord EC Jr, Murray JD, Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br J Cancer 86: 14–18, 2002PubMedCrossRefGoogle Scholar
  7. 7.
    Duffau H, Capelle L, Preferential brain locations of low-grade gliomas: comparison with glioblastomas and review of hypothesisCancer15: 2622–2626, 2004CrossRefGoogle Scholar
  8. 8.
    Belien AT, Paganetti PA, Schwab ME, Membrane-type 1 matrix metalloprotease (MT1-MMP) enables invasive migration of glioma cells in central nervous system white matter J Cell Biol144: 373–384, 1999PubMedCrossRefGoogle Scholar
  9. 9.
    Pedersen PH, Edvardsen K, Garcia-Cabrera I, Mahesparan R, Thorsen J, Mathisen B,Rosenblum ML, Bjerkvig R, Migratory patterns of lac-z transfected human glioma cells in the rat brainInt J Cancer62: 767–771, 1995PubMedCrossRefGoogle Scholar
  10. 10.
    Giese A, Bjerkvig R, Berens ME, Westphal M, Cost of migration: invasion of malignant gliomas and implications for treatmentJ Clin Oncol21: 1624–1636, 2003PubMedCrossRefGoogle Scholar
  11. 11.
    Giese A, Westphal M, Glioma invasion in the central nervous systemNeurosurgery39: 235–250, 1996PubMedCrossRefGoogle Scholar
  12. 12.
    Yoshida D, Watanabe K, Noha M, Takahashi H, Teramoto A, Sugisaki Y, Tracking cell invasion of human glioma cells and suppression by anti-matrix metalloproteinase agent in rodent brain-slice modelBrain Tumor Pathol19: 69–76, 2002PubMedCrossRefGoogle Scholar
  13. 13.
    Duffau H, Khalil I, Gatignol P, Denvil D, Capelle L, Surgical removal of corpus callosum infiltrated by low-grade glioma: functional outcome and oncological considerationsJ Neurosurg100: 431–437, 2004PubMedGoogle Scholar
  14. 14.
    Burger PC, Heinz ER, Shibata T, Kleihues P, Topographic anatomy and CT correlations in the untreated glioblastoma multiformeJ Neurosurg68: 698–704, 1988PubMedGoogle Scholar
  15. 15.
    Scherer H, The forms of growth in gliomas and their practical significanceBrain63: 1–35, 1940CrossRefGoogle Scholar
  16. 16.
    Yasargil MG, Reeves JD, Tumours of the limbic and paralimbic systemActa Neurochir (Wien)116: 147–149, 1992CrossRefGoogle Scholar
  17. 17.
    Bynevelt M, Britton J, Seymour H, MacSweeney E, Thomas N, Sandhu K, FLAIR imaging in the follow-up of low-grade gliomas: time to dispense with the dual-echo?Neuroradiology43: 129–133, 2001PubMedCrossRefGoogle Scholar
  18. 18.
    Nieuwenhuys R, Voogd J, van Huijzen C, The Human Central Nervous System Springer-Verlag, Berlin, 1988Google Scholar
  19. 19.
    Catani M, Howard RJ, Pajevic S, Jones DK, Virtual in vivo interactive dissection of white matter fasciculi in the human brainNeuroimage17: 77–94, 2002PubMedCrossRefGoogle Scholar
  20. 20.
    Sincoff EH, Tan Y, Abdulrauf SI, White matter fiber dissection of the optic radiations of the temporal lobe and implications for surgical approaches to the temporal hornJ Neurosurg101: 739–746, 2004PubMedGoogle Scholar
  21. 21.
    Peuskens D, van Loon J, Van Calenbergh F, van den Bergh R, Goffin J, Plets C, Anatomy of the anterior temporal lobe and the frontotemporal region demonstrated by fiber dissectionNeurosurgery55: 1174–1184, 2004PubMedCrossRefGoogle Scholar
  22. 22.
    Poupon C, Clark CA, Frouin V, Regis J, Bloch I, Le Bihan D, Mangin J, Regularization of diffusion-based direction maps for the tracking of brain white matter fasciclesNeuroimage12: 184–195, 2000PubMedCrossRefGoogle Scholar
  23. 23.
    Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A, In vivo fiber tractography using DT-MRI data Magn Reson Med44: 625–632, 2000PubMedCrossRefGoogle Scholar
  24. 24.
    Conturo TE, Lori NF, Culls TS, Akbudak E, Snyder AZ, Shimony JS, McKinstry RC, Burton H, Raichle ME, Tracking neuronal fiber pathways in the living human brainProc Natl Acad Sci USA96: 10422–10427, 1999PubMedCrossRefGoogle Scholar
  25. 25.
    Mandonnet E, Delattre JY, Tanguy ML, Swanson KR, Carpentier AF, Duffau H, Cornu P, van Effenterre R, Alvord EC Jr, Capelle L, Continuous growth of mean tumor diameter in a subset of grade II gliomasAnn Neurol53: 524–528, 2003PubMedCrossRefGoogle Scholar
  26. 26.
    Jbabdi S, Mandonnet E, Duffau H, Capelle L, Swanson KR, Pélégrini-Issac M, Guillevin R, Benali H: Diffusion Tensor Imaging allows anisotropic growth simulations of low-grade gliomas. Magn Reson Med 54: 616–624, 2005Google Scholar
  27. 27.
    Yasargil MG, von Ammon K, Cavazos E, Doczi T, Reeves JD, Roth P, Tumours of the limbic and paralimbic systemsActa Neurochir (Wien)118: 40–52, 1992CrossRefGoogle Scholar
  28. 28.
    Zentner J, Meyer B, Stangl A, Schramm J, Intrinsic tumors of the insula: a prospective surgical study of 30 patientsJ Neurosurg85: 263–271, 1996PubMedCrossRefGoogle Scholar
  29. 29.
    Yasargil MG: Microsurgery. Vol. 4a. 1994, Stuttgart: ThiemeGoogle Scholar
  30. 30.
    Kier EL, Staib LH, Davis LM, Bronen RA, MR imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipitofrontal fasciculus, and Meyer’s loop of the optic radiationAm J Neuroradiol25: 677–691, 2004PubMedGoogle Scholar
  31. 31.
    Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L, New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulationsBrain128: 797–810, 2005PubMedCrossRefGoogle Scholar
  32. 32.
    Mueller W, Hartmann C, Hoffmann A, Lanksch W, Kiwit J, Tonn J, Veelken J, Schramm J, Weller M, Wietsler OD, Louis DN, von Deimling A, Genetic signature of oligoastrocytomas correlates with tumor location and denotes distinct molecular subsetsAm J Pathol161: 313–319, 2002PubMedGoogle Scholar
  33. 33.
    Zlatescu MC, TehraniYazri A, Sasaki H, Megyesi JF, Betensky RA, Louis DN, Cairncross JG, Tumor location and growth pattern correlate with genetic signature in oligodendroglial neoplasmsCancer Res61: 6713–6715, 2001PubMedGoogle Scholar
  34. 34.
    Duffau H, Capelle L, Denvil D, Sichez N, Gatignol P, Taillandier L, Lopes M, Mitchell MC, Roche S, Muller JC, Bitar A, Sichez JP, van Effenterre R, Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patientsJ Neurosurg98: 764–778, 2003PubMedCrossRefGoogle Scholar
  35. 35.
    Duffau H, Capelle L, Sichez N, Denvil D, Lopes M, Sichez JP, van Effenterre R, Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional studyBrain125: 199–214, 2002PubMedCrossRefGoogle Scholar
  36. 36.
    Duffau H, Gatignol P, Denvil D, Lopes M, Capelle L, The articulatory loop: study of the subcortical connectivity by electrostimulationNeuroreport14: 2005–2008, 2003PubMedCrossRefGoogle Scholar
  37. 37.
    Mori S, Frederiksen K, van Zijl PC, Stieltjes B, Kraut MA, Solaiyappan M, Pomper MG, Brain white matter anatomy of tumor patients evaluated with diffusion tensor imagingAnn Neurol51: 377–380, 2002PubMedCrossRefGoogle Scholar
  38. 38.
    Sundgren PC, Dong Q, Gomez-Hassan D, Mukherji SK, Maly P, Welsh R, Diffusion tensor imaging of the brain: review of clinical applicationsNeuroradiology46: 339–350, 2004PubMedCrossRefGoogle Scholar
  39. 39.
    Kubicki M, Westin CF, Maier SE, Frumin M, Nestor PG, Salisbury DF, Kikinis R, Jolesz FA, McCarley RW, Shenton ME, Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging studyAm J Psychiatry159: 813–820, 2002PubMedCrossRefGoogle Scholar
  40. 40.
    Park HJ, Westin CF, Kubicki M, Niznikiewicz M, Baer A, Frumin M, Kikinis R, Jolesz FA, McCarley RW, Shenton ME, White matter hemisphere asymmetries in healthy subjects and in schizophrenia: a diffusion tensor MRI study Neuroimage 23: 213–223, 2004PubMedCrossRefGoogle Scholar
  41. 41.
    Nestor PG, Kubicki M, Gurrera RJ, Niznikiewicz M, Frumin M, McCarley RW, Shenton ME, Neuropsychological correlates of diffusion tensor imaging in schizophreniaNeuropsychology18: 629–637, 2004PubMedCrossRefGoogle Scholar
  42. 42.
    Highley JR, Walker MA, Esiri MM, Crow TJ, Harrison PJ, Asymmetry of the uncinate fasciculus a postmortem study of normal subjects and patients with schizophreniaCereb Cortex12: 1218–1224, 2002PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Emmanuel Mandonnet
    • 1
  • Laurent Capelle
    • 1
  • Hugues Duffau
    • 1
    Email author
  1. 1.Department of Neurosurgery, Inserm U678Hôpital de la SalpêtrièreParisFrance

Personalised recommendations