Journal of Neuro-Oncology

, Volume 77, Issue 2, pp 177–183 | Cite as

Sestamibi technetium-99m brain single-photon emission computed tomography to identify recurrent glioma in adults: 201 studies

  • Florence Prigent –Le JeuneEmail author
  • François Dubois
  • Serge Blond
  • Marc Steinling
Clinical-Patient Studies



In the follow-up of treated gliomas, CT and MRI can often not differentiate radionecrosis from recurrent tumor. The aim of this study was to assess the interest of functional imaging with 99mTc-MIBI SPECT in a large series of 201 examinations.


MIBI SPECT were performed in 81 patients treated for brain gliomas. A MIBI uptake index was computed as the ratio of counts in the lesion to counts in the controlateral region. SPECT was compared to stereotactic biopsy in 14 cases, or in the others cases to imaging evolution or clinical course at 6 months after the last tomoscintigraphy

Two hundred and one tomoscintigraphies were performed. One hundred and two scans were true positive, 82 scans were true negative. Six scans were false positive (corresponding to 3 patients): 2 patients with an inflammatory reaction after radiosurgery, 1 with no explanation up to now. Eleven scans were false negative (5 patients): 1 patient with a deep peri-ventricular lesion, 2 patients with no contrast enhancement on MRI, 2 patients with a temporal tumor. The sensitivity for tumor recurrence was 90%, specificity 91.5% and accuracy 90.5%. We studied separately low and high grade glioma: sensitivity for tumor recurrence was respectively 91% and 89%, specificity 100% and 83% and accuracy 95% and 87%. MIBI SPECT allowed the diagnose of anaplasic degenerence of low grade sometimes earlier than clinical (5 cases) or MRI signs (7 cases).


Our results confirm the usefullness of MIBI SPECT in the follow-up of treated gliomas for the differential diagnosis between radiation necrosis and tumor recurrence.


brain SPECT MIBI radiation necrosis tumor recurrence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Black K, Hawkins R, Kim K, Becker D, Lerner C, Marciano D, Use of thallium-201 SPECT to quantitate malignancy grade of gliomas J Neurosurg 71:342–346, 1989PubMedGoogle Scholar
  2. 2.
    Oriuchi N, Tamura M, Shibazaki T,Ohye C, Watanabe N, Tateno M, Tomiyoshi K, et al. Clinical evaluation of Thallim-201 SPECT in supratentorial gliomas: relationship to histologic grade, prognosis and proliferative activities J Nucl Med 34:2085–2089, 1993PubMedGoogle Scholar
  3. 3.
    Sasaki M, Kuwabara Y, Yoshiba T, akagawa M, Fukumura T, Mihara F, Morioka T, et al. A comparative study of thallium-201 SPET, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumours Eur J Nucl Med 25:1261–1269, 1998PubMedCrossRefGoogle Scholar
  4. 4.
    Slizofski WJ, Krishna L, Katsetos C, Black P, Miyamoto C, Brown SJ, Vender J, et al. Thallium imaging for brain tumors with results measured by a semiquantitative index and correlated with histopathology Cancer 74:3190–3197, 1994PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang J, Kim S, Andrews D, Intenzo CM, Comparative assessment of four different Tl-201 tumor uptake indices in the evaluation of brain tumors Clin Nucl Med 23:691–694, 1998PubMedCrossRefGoogle Scholar
  6. 6.
    Bedar JB, Samnick S, Moringlane JR, Feiden W, Schaefer A, Kremp S, Kirsch CM, Evaluation of L-3-[123I]iodo-α-methyltyrosine SPET and [18F]fluorodeoxyglucose PET in the detection and grading of recurrences in patients pretreated for gliomas at follow-up: a comparative study with stereotactic biopsy Eur J Nucl Med 26: 144–151, 1999CrossRefGoogle Scholar
  7. 7.
    Coleman RE, Hoffman JM, Hanson MW, Sostman HD, Schold SC, Clinical application of PET for the evaluation of brain tumors J Nucl Med 32:616–622, 1991PubMedGoogle Scholar
  8. 8.
    Di Chiro G, Delapaz R, Brooks R, Sokolof L, Kornblith P, Smith B, Patronas N, et al. Glucose utilization of cerebral gliomas measured by [18 F] fluorodeoxyglucose and positron emission tomography Neurology 32:1323–1329, 1982PubMedGoogle Scholar
  9. 9.
    Di Chiro G, Oldfield E, Wright D, Katz DA, PET, CT and NMR of cerebral necrosis following radiotherapy or intra-arterial chemotherapy for cerebral tumors AJNR 6:473–474. 1985Google Scholar
  10. 10.
    Di Chiro G, Oldfield E, Wright D, De Michele D, Katz D, Patronas N, Doppman J, et al.: Cerebral necrosis after radiotherapy and/or intra-arterial chemotherapyGoogle Scholar
  11. 11.
    Patronas N, Di Chiro G, Brooks R, DeLaPaz R, Kornblith P, Smith B, Rizzoli H, et al. Work in progress: fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain Radiology 144:885–889, 1982PubMedGoogle Scholar
  12. 12.
    Derlon JM, Bourdet C, Bustany P, Chatel M, Theron J, Darcel F, Syrota A, [11 C]-L-Methionine uptake in gliomas Neurosurgery 25:720–728, 1989PubMedCrossRefGoogle Scholar
  13. 13.
    Derlon JM, Petit-Taboue MC, Chapon F, Beaudouin V, Noël MH, Creveuil C, Courtheoux P, et al. The in vivo-metabolic pattern of low-grade brain gliomas: a positron emission tomographic study using 18 F-fluorodeoxyglucose and 11 C-L-methylmethionine Neurosurgery 40:276–288, 1997PubMedCrossRefGoogle Scholar
  14. 14.
    Thiel A, Pietrzyk U, Sturm V, Herholz K, Hövels M, Schröder R, Enhanced accuracy in differential diagnosis of radiation necrosis by positron emission tomography-magnetic resonance imaging coregistration: technical case report Neurosurgery 1:232–234, 2000CrossRefGoogle Scholar
  15. 15.
    Arbab A, Koizumi K, Toyama K, Araki T, Uptake of Technetium-99 m-Tetrofosmin, Technetium-99 m-MIBI and Thallium-201 in tumor cell lines J Nucl Med 37:1551–1556, 1996PubMedGoogle Scholar
  16. 16.
    Maublant JC, Zhang Z, Rapp M, Ollier M, Michelot J, Veyre A, In vitro uptake of Technetium-99 m-Teboroxime in carcinoma cell lines and normals cells: comparison with Technetium-99 m-Sestamibi and Thallium-201 J Nucl Med 34:1949–1952, 1993PubMedGoogle Scholar
  17. 17.
    Piwnica- Worms D, Kronauge JF, Chiu ML, Uptake and retention of hexakis (2-methoxyisobutyl isonitrile) technetium (I) in cultured chick myocardial cells: mitochondrial and plasma membrane potential dependance Circulation 82:1826–1838, 1990PubMedGoogle Scholar
  18. 18.
    Piwnica- Worms D, Kronauge JF, Delmon L, Holman BL, Marsh JD, Jones AG, Effect of metabolic inhibition on Technetium-99 m-MIBI kinetics in cultured chick myocardial cells J Nucl Med 31:464–472, 1990PubMedGoogle Scholar
  19. 19.
    Daumas-Duport C, Scheithauer B, O’Fallon J, Kelly P, Grading of astrocytomas: a simple and reproductible method Cancer 62: 2152–2165, 1988PubMedCrossRefGoogle Scholar
  20. 20.
    Daumas-Duport C, Varlet P, Tucker ML, Beuvon F, Cevera P, Chodkiewicz JP, Oligodendrogliomas. Part I: Patterns of growth, histological diagnosis, clinical and imaging correlations: a study of 153 cases J Neuro-Oncol 34:37–59, 1997CrossRefGoogle Scholar
  21. 21.
    Daumas-Duport C, Tucker ML, Kolles H, Cervera P, Beuvon F, Varlet P, Udo N, et al. Oligodendrogliomas. Part II: A new grading system based on morphological and imaging criteria J Neuro-Oncol 34: 61–78, 1997CrossRefGoogle Scholar
  22. 22.
    Stokely EM, Sveinsdottir E, Lassen NA, Rommer P, A single photon dynamic computer assisted tomograph (DCAT) for imaging brain function in multiple cross sections J Comput Assist Tomogr 4: 230–240, 1980PubMedCrossRefGoogle Scholar
  23. 23.
    Lamy-Lhuillier C, Dubois F, Blond S, Lecouffe P, Steinling M Intérêt de la tomoscintigraphie cérébrale au sestamibi marqué au technétium dans le diagnostic différentiel récidive tumorale-radionécrose des tumeurs gliales sus-tentorielles de l’adulte. Neurochirurgie 45:110–117, 1999Google Scholar
  24. 24.
    Cairncross JG, Pexman JH, Rathbone M, DelMaestro RF, Postoperative contrast enhancement in patients with brain tumor. Ann Neurol 17: 570–572, 1985PubMedCrossRefGoogle Scholar
  25. 25.
    Dooms G, Hecht S, Brant-Zawadzki M, Berthiaume Y, Norman D, Newton TH, Brain radiation lesions: MR imaging Radiology 158:149–155, 1986PubMedGoogle Scholar
  26. 26.
    Dean BL, Drayer BP, Bird CR, Flom RA, Hodak JA, Coons SW, Carey RG, Gliomas: classification with MR imaging Radiology 174:411–415, 1990PubMedGoogle Scholar
  27. 27.
    Earnest F, Kelly P, Scheithauer BW, Kall BA, Cascino TL, Ehman RL, Forbes GS, et al. Cerebral astrocytomas: Histipathologic correlation of MR and CT contrast enhancement with stereotactic biopsy Radiology 166:823–827, 1988PubMedGoogle Scholar
  28. 28.
    Borodin OYU, Velichko OB, Garganeev AB, Riannel JU, Barisheva EV, Krivonogov NG, Ussov W.: Comparaison of 99 mTc-MIBI SPECT and GD-enhanced MRI in detection of recurrent tumor in malignant gliomas. EANM Congress Paris 2000. Eur J Nucl Med 2000Google Scholar
  29. 29.
    Ambrus E, Pavics L, Grünwald F, Barath B, Tiszlavicz L, Bender H, Menzel C, et al. 99 mTc-MIBI-SPECT-studies in the evaluation of brain tumors Radiologia diagnostica 35:299–302, 1994Google Scholar
  30. 30.
    Kahn D, Follett K, Bushnell D, Nathan MA, Piper JG, Madsen M, Kirchner PT, Diagnosis of recurrent brain tumor:value of 201-Tl vs 18 F-fluorodeoxyglucose PET AJR. 163:1459–1465, 1994PubMedGoogle Scholar
  31. 31.
    Lorberboym M, Baram J, Feibel M, Hercbergs A, Lieberman L, A prospective evaluation of thallium-201 single photon emission computerized tomography for brain tumor burden Int J Rad Oncol Biol Phys 32:249–254, 1995CrossRefGoogle Scholar
  32. 32.
    Bagni B, Pinna L, Tamarozzi R, Cattaruzzi E, Marzola MC, Bagni I, Ceruti S, et al. SPET imaging of intracranial tumors with Tc99 m sestamibi Nucl Med Comm 16:258–264, 1995CrossRefGoogle Scholar
  33. 33.
    Baillet G, Albuquerque L, Chen Q, poisson M, Delattre JY, Evaluation of single photon emission tomography imaging of supratentorial brain gliomas with technetium-99 m sestamibi Eur J Nucl Med 21:1061–1066, 1994PubMedCrossRefGoogle Scholar
  34. 34.
    Maffioli L, Gasparini M, Chiti A, Gramaglia A, Mongioj V, pozzi A, Bombardieri E, Clinical role of technetium-99 m sestamibi single-photon emission tomography in evaluating pretreated patients with brain tumours Eur J Nucl Med 23:308–311, 1996PubMedCrossRefGoogle Scholar
  35. 35.
    O’Tuama LA, Treves S, Larar J, Packard AB, Kwan AJ, Barnes PD, Scott RM, et al. Thallim-201 versus Technetium-99 m-MIBI SPECT in evaluation of childhood brain tumors: a within subject comparison J Nucl Med 34:1045–1051, 1993PubMedGoogle Scholar
  36. 36.
    Beauchesne P, Soler C, Maatougui K, Schmitt T, Barral FG, Michel D, Dubois F, et al. La tomoscintigraphie cérébrale au 99 mTc-MIBI est-elle utile au diagnostic de récidive locale chez les patients atteints de gliomes malins? Cancer/Radiother 2:42–48, 1998CrossRefGoogle Scholar
  37. 37.
    Park C, Kim S, Zhang J, Intenzo CM, McEwan JR, Tc-99 m MIBI brain SPECT in the diagnosis of recurrent glioma Clin Nucl Med 19:57–58, 1994PubMedCrossRefGoogle Scholar
  38. 38.
    Soler C, Beauchesne P, Maatougui K, Schmitt T, Barral FG, Michel D, Dubois F, et al. Technetium 99 m sestamibi brain single photon emission tomography for detection of recurrent gliomas after radiation therapy Eur J Nucl Med 25:1649–1657, 1998PubMedCrossRefGoogle Scholar
  39. 39.
    Kostakaglu L, Elahi N, Kïratli P, Clinical validation of the influence of P-glycoprotein on technetium-99 m-sestamibi uptake in malignant tumors J Nucl Med 38: 1003–1008, 1997Google Scholar
  40. 40.
    Nabors MW, Griffin CA, Zehnbauer BA, Hruban RH, Phillips PC, Grossman SA, et al. Multidrug resistance gene (MDR1) expression in human brain tumors J Neurosurg 75:941–946, 1991PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Florence Prigent –Le Jeune
    • 1
    Email author
  • François Dubois
    • 2
  • Serge Blond
    • 2
  • Marc Steinling
    • 1
  1. 1.Service de Médecine NucléaireUnité fonctionnelle de neurologie, Hôpital Roger SalengroChru de LilleFrance
  2. 2.Service de NeurochirurgieHôpital Roger SalengroChru de LilleFrance

Personalised recommendations