Journal of Neuro-Oncology

, Volume 74, Issue 2, pp 123–133 | Cite as

Glucose Metabolism Heterogeneity in Human and Mouse Malignant Glioma Cell Lines

  • Corinne E. Griguer
  • Claudia R. Oliva
  • G. Yancey Gillespie
Laboratory Investigation


The current study examined specific bioenergetic markers associated with the metabolic phenotype of several human and mouse glioma cell lines. Based on preliminary studies, we hypothesized that glioma cells would express one of at least two different metabolic phenotypes, possibly acquired through progression. The D-54MG and GL261 glioma cell lines displayed an oxidative phosphorylation (OXPHOS)-dependent phenotype, characterized by extremely long survival under glucose starvation, and low tolerance to poisoning of the electron transport chain (ETC). Alternatively, U-251MG and U-87MG glioma cells exhibited a glycolytic-dependent phenotype with functional OXPHOS. These cells displayed low tolerance to glucose starvation and were resistant to a ETC blocker. Moreover, these cells could be rescued in low glucose conditions by oxidative substrates (e.g., lactate, pyruvate). Finally, these two phenotypes could be distinguished by the differential expression of LDH isoforms. OXPHOS-dependent cells expressed both LDH-A and -B isoforms whereas glycolytic-dependent glioma cells expressed only LDH-B. In the latter case, LDH-B would be expected to be essential for the use of extracellular lactate to fuel cell activities. These observations raise the possibility that the heterogeneity in glucose metabolism and, in particular, the sole expression of LDH-B, might identify an important biological marker of glioma cells that is critical for their progression and that might afford a new target for anticancer drugs.


glioma glucose metabolism glucose starvation lactate LDH isoforms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pines, J. 1995Cyclins, CDKs and cancerSemin Cancer Biol66372CrossRefPubMedGoogle Scholar
  2. 2.
    Warburg, O. 1956On the origin of cancer cellsScience123309314PubMedGoogle Scholar
  3. 3.
    Owen, O, Kalhan, S, Hanson, R. 2002The key role of anaplerosis and cataplerosis for citric acid cycle functionJ Biol Chem2773040930412CrossRefPubMedGoogle Scholar
  4. 4.
    Kato, K, Ogura, T, Kishimoto, A, Minegishi, Y, Nakajima, N, Miyazaki, M, Esumi, H. 2002Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formationOncogene2160826090CrossRefPubMedGoogle Scholar
  5. 5.
    Zhu, H, Bunn, H. 1999Oxygen sensing and signaling: impact on the regulation of physiologically important genesRespir Physiol115239247CrossRefPubMedGoogle Scholar
  6. 6.
    Semenza, G. 1999Perspectives on oxygen sensingCell98281284CrossRefPubMedGoogle Scholar
  7. 7.
    Dang, C, Semenza, G. 1999Oncogenic alterations of metabolismTrends Biochem Sci246872CrossRefPubMedGoogle Scholar
  8. 8.
    Zaman, K, Ryu, H, Hall, D, O’Donovan, K, Lin, K, Miller, M, Marquis, J, Baraban, J, Semenza, G, Ratan, R. 1999Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21[waf1/cip1], and erythropoietinJ Neurosci1998219830PubMedGoogle Scholar
  9. 9.
    Carmeliet, P, Dor, Y, Herbert, J, Fukumura, D, Brusselmans, K, Dewerchin, M, Neeman, M, Bono, F, Abramovitch, R, Maxwell, P, Koch, C, Ratcliffe, P, Moons, L, Jain, R, Collen, D, Keshert, E, Keshet, E. 1998Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesisNature394485490Google Scholar
  10. 10.
    Knisely, J, Rockwell, S. 2002Importance of hypoxia in the biology and treatment of brain tumorsNeuroimaging Clin N Am12525536CrossRefPubMedGoogle Scholar
  11. 11.
    da Rocha, A, Mans, D, Regner, A, Schwartsmann, G. 2002Targeting protein kinase C: new therapeutic opportunities against high-grade malignant gliomas?Oncologist71733CrossRefPubMedGoogle Scholar
  12. 12.
    Jacobs, A, Dittmar, C, Winkeler, A, Garlip, G, Heiss, W. 2002Molecular imaging of gliomasMol Imaging1309335CrossRefPubMedGoogle Scholar
  13. 13.
    Mosmann, T. 1983Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assaysJ Immunol Methods655563PubMedGoogle Scholar
  14. 14.
    Medina, R, Meneses, M, Vera, J, Guzman, C, Nualart, F, Rodriguez, F, Garcia, M, Kato, S, Espinoza, N, Monso, C, Carvajal, A, Pinto, M, Owen, G. 2004Differential regulation of glucose transporter expression by estrogen and progesterone in Ishikawa endometrial cancer cellsJ Endocrinol182467478CrossRefPubMedGoogle Scholar
  15. 15.
    Aleksandrov, L, Mengos, X, Chang, A, Aleksandrov, M, Riordan, J. 2001Differential interactions of nucleotides at the two nucleotide binding domains of the Cystic Fibrosis Transmembrane Conductance RegulatorJ Biol Chem2761291812923CrossRefPubMedGoogle Scholar
  16. 16.
    Skory, C. 2000Isolation and expression of lactate dehydrogenase genes from Rhizopus oryzaeAppl Environ Microbiol6623432348CrossRefPubMedGoogle Scholar
  17. 17.
    Brookes, PS, Pinner, A, Ramachandran, A, Coward, L, Barnes, S, Kim, H, Darley-Usmar, VM. 2002High throughput two-dimensional blue-native electrophoresis: a tool for functional proteomics of mitochondria and signaling complexesProteomics2969977CrossRefPubMedGoogle Scholar
  18. 18.
    Bradley, JD, Kataoka, Y, Advani, S, Chung, SM, Arani, RB, Gillespie, GY, Whitley, RJ, Markert, JM, Roizman, B, Weichselbaum, RR. 1999Ionizing radiation improves survival in mice bearing intracranial high-grade gliomas injected with genetically modified herpes simplex virusClin Cancer Res515171522PubMedGoogle Scholar
  19. 19.
    Andreansky, S, Soroceanu, L, Flotte, ER, Chou, J, Markert, JM, Gillespie, GY, Roizman, B, Whitley, RJ. 1997Evaluation of genetically engineered herpes simplex viruses as oncolytic agents for human malignant brain tumorsCancer Res1515021509Google Scholar
  20. 20.
    Andreansky, SS, He, B, Gillespie, GY, Soroceanu, L, Markert, J, Chou, J, Roizman, B, Whitley, RJ. 1996The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumorsProc Natl Acad Sci USA93113131138CrossRefPubMedGoogle Scholar
  21. 21.
    Baldwin, SA. 1993Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteinsBiochim Biophys Acta11541749PubMedGoogle Scholar
  22. 22.
    Swanson, RA. 1992Astrocyte glutamate uptake during chemical hypoxia in vitroNeurosci Lett147143146CrossRefPubMedGoogle Scholar
  23. 23.
    Acker, H, Holtermann, G, Bolling, B, Carlsson, J. 1992Influence of glucose on metabolism and growth of rat glioma cells [C6] in multicellular spheroid cultureInt J Cancer52279285PubMedGoogle Scholar
  24. 24.
    Semenza, G, Artemov, D, Bedi, A, Bhujwalla, Z, Chiles, K, Feldser, D, Laughner, E, Ravi, R, Simons, J, Taghavi, P, Zhong, H. 2001The metabolism of tumours: 70 years laterNovartis Found Symp240251260PubMedGoogle Scholar
  25. 25.
    Preston, T, Abadi, A, Wilson, L, Singh, G. 2001Mitochondrial contributions to cancer cell physiology: potential for drug developmentAdv Drug Deliv Rev494561CrossRefPubMedGoogle Scholar
  26. 26.
    Helmlinger, G, Yuan, F, Dellian, M, Jain, R. 1997Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlationNat Med3177182CrossRefPubMedGoogle Scholar
  27. 27.
    Tomida, A, Yun, J, Tsuruo, T. 1996Glucose-regulated stresses induce resistance to camptothecin in human cancer cellsInt J Cancer68391396CrossRefPubMedGoogle Scholar
  28. 28.
    Brown, J, Giaccia, A. 1998The unique physiology of solid tumors: opportunities [and problems] for cancer therapyCancer Res5814081416PubMedGoogle Scholar
  29. 29.
    Racker, E. 1972Bioenergetics and the problem of tumor growthAm Sci605663PubMedGoogle Scholar
  30. 30.
    Mathupala, S, Rempel, A, Pedersen, P. 1997Aberrant glycolytic metabolism of cancer cells: a remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical role for type II hexokinaseJ Bioenerg Biomembr29339343CrossRefPubMedGoogle Scholar
  31. 31.
    Hatanaka, M. 1974Transport of sugars in tumor cell membranesBiochim Biophys Acta35577104PubMedGoogle Scholar
  32. 32.
    Bell, G, Burant, C, Takeda, J, Gould, G. 1993Structure and function of mammalian facilitative sugar transportersJ Biol Chem2681916119164PubMedGoogle Scholar
  33. 33.
    Carruthers, A. 1990Facilitated diffusion of glucosePhysiol Rev7011351176PubMedGoogle Scholar
  34. 34.
    Masters, C. 1984Interactions between glycolytic enzymes and components of the cytomatrixJ Cell Biol99222s225sCrossRefPubMedGoogle Scholar
  35. 35.
    Semenza, G. 2001Hypoxia-inducible factor 1: control of oxygen homeostasis in health and diseasePediatr Res49614617PubMedGoogle Scholar
  36. 36.
    Firth, J, Ebert, B, Pugh, C, Ratcliffe, P. 1994Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 3′ enhancerProc Natl Acad Sci USA.9164966500PubMedGoogle Scholar
  37. 37.
    Ebert, B, Gleadle, J, O’Rourke, J, Bartlett, S, Poulton, J, Ratcliffe, P. 1996Isoenzyme-specific regulation of genes involved in energy metabolism by hypoxia: similarities with the regulation of erythropoietinBiochem J313809814PubMedGoogle Scholar
  38. 38.
    Koukourakis, M, Giatromanolaki, A, Sivridis, E. 2003umour and Angiogenesis Research Group. Lactate dehydrogenase isoenzymes 1 and 5: differential expression by neoplastic and stromal cells in non-small cell lung cancer and other epithelial malignant tumorsTumour Biol24199202CrossRefPubMedGoogle Scholar
  39. 39.
    Subhash, M, Rao, B, Shankar, S. 1993Changes in lactate dehydrogenase isoenzyme pattern in patients with tumors of the central nervous systemNeurochem Int22121124CrossRefPubMedGoogle Scholar
  40. 40.
    Peoch, M, Duc, G, Trayaud, A, Farion, R, Bas, J, Pasquier, B, Remy, C. 1999uantification and distribution of neovascularization following microinjection of C6 glioma cells in rat brainAnticancer Res.1930253030PubMedGoogle Scholar
  41. 41.
    Duc, G., Peoch, M., Remy, C., Charpy, O., Muller, R., Bas, J., Decorps, M. 1999Use of T[2]-weighted susceptibility contrast MRI for mapping the blood volume in the glioma-bearing rat brainMagn Reson Med42754761CrossRefPubMedGoogle Scholar
  42. 42.
    Hilf, R, Rector, W, Orlando, R. 1976Multiple molecular forms of lactate dehydrogenase and glucose 6-phosphate dehydrogenase in normal and abnormal human breast tissuesCancer3718251830PubMedGoogle Scholar
  43. 43.
    Rosado, A, Morris, H, Weinhouse, S. 1969Lactate dehydrogenase subunits in normal and neoplastic tissues of the ratCancer Res2916731680PubMedGoogle Scholar
  44. 44.
    Shim, H, Dolde, C, Lewis, B, Wu, C, Dang, G, Jungmann, R, Dalla-Favera, R, Dang, C. 1997c-Myc transactivation of LDH-A: implications for tumor metabolism and growthProc Natl Acad Sci USA9466586663CrossRefPubMedGoogle Scholar
  45. 45.
    Derda, D, Miles, M, Schweppe, J, Jungmann, R. 1980Cyclic AMP regulation of lactate dehydrogenase. Isoproterenol and N6O2-’-dibutyryl cyclic AMP increase the levels of lactate dehydrogenase-5 isozyme and its messenger RNA in rat C6 glioma cellsJ Biol Chem2551111211121PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Corinne E. Griguer
    • 1
  • Claudia R. Oliva
    • 1
  • G. Yancey Gillespie
    • 1
  1. 1.Department of SurgeryUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations