Journal of Neuro-Oncology

, Volume 70, Issue 2, pp 217–228

Molecular Mechanisms of Glioma Cell Migration and Invasion

  • Tim Demuth
  • Michael E. Berens
Article

Abstract

Gliomas are the most common intracranial tumors. In the US, approximately 15,000 patients die with glioblastoma per year (CBTRUS 2002). Despite modern diagnostics and treatments the median survival time does not exceed 15 months. However, it has long been observed that after surgical removal, tumors recur predominantly within 1 cm of the resection cavity. This is mainly due to the fact that at the time of surgery, cells from the bulk tumor have already invaded normal brain tissue. Decades ago Matsukado showed that more than 50% of untreated brain tumors had already reached the contralateral hemisphere (J Neurosurg 18: 636–644, 1961). Therefore one of the most important hallmarks of malignant gliomas is their invasive behavior. Dandy already recognized the highly invasive characteristics of this tumor type and performed hemispherectomy in patients with preoperative hemiplegia (J Am Med Assoc 90: 823–825, 1928). Despite his and others' heroic efforts, recurrence was detected as early as 3 months after surgery (Bell, LJ: J Neurosurg 6: 285–293, 1949), leading to the discontinuation of this radical approach. Diffuse gliomas remain a particularly challenging clinical management problem. Over the last 20 years no significant increase in survival of patients suffering from this disease has been achieved. Even drugs directed against newly identified targets like MMPs or angiogenesis-related targets fail to increase survival duration (Tonn, Goldbrunner: Acta Neurochir Suppl 88: 163–167, 2003) Furthermore, anti-angiogenic drugs have been shown to increase glioma invasiveness, finally leading to gliomatosis cerebri. (Lamszus et al.: Acta Neurochir Suppl 88: 169–177, 2003). In this review we focus on the main features which may underlie the invasive phenotype of human gliomas, and offer a biological basis for optimism towards therapeutic advances to come.

cadherin DAP3 ECM FAK Fnl4 gap junction glioma GTPases integrin invasion invasive transcriptome migration NCAM P311 PI3-K SPARC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Graham CH, Connelly I, MacDougall JR, Kerbel RS, Stetler-Stevenson WG, Lala PK: Resistance of malignant trophoblast cells to both the anti-proliferative and antiinvasive effects of transforming growth factor-beta. Exp Cell Res 214: 93–99, 1994Google Scholar
  2. 2.
    Hynes RO, Lander, AD: Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell 68: 303–322, 1992Google Scholar
  3. 3.
    Gumbiner BM: Epithelial morphogenesis. Cell 69: 385–387, 1992Google Scholar
  4. 4.
    Alattia JR, Tong KI, Takeichi M, Ikura M: Cadherins. Methods Mol Biol 172: 199–210, 2002Google Scholar
  5. 5.
    Stanley JR: Autoantibodies against adhesion molecules and structures in blistering skin diseases. J Exp Med 181: 1–4, 1995Google Scholar
  6. 6.
    Anderson DC, Springer TA: Leukocyte adhesion defi-ciency: an inherited defect in the Mac-1, LFA-1, and p 150,95 glycoproteins. Annu Rev Med 38: 175–194, 1987Google Scholar
  7. 7.
    Etzioni A, Frydma M, Pollack S, Avidor I, Phillips ML, Paulson JC, Gershoni-Baruch R: Brief report: recurrent severe infections caused by a novel leukocyte adhesion deficiency. N Engl J Med 327: 1789–1792, 1992Google Scholar
  8. 8.
    Clezardin P: Recent insights into the role of integrins in cancer metastasis. Cell Mol Life Sci 54: 541–548, 1998Google Scholar
  9. 9.
    Rutka JT, Apodaca G, Stern R, Rosenblum M: The extracellular matrix of the central and peripheral nervous systems: structure and function. J Neurosurg 69: 155–170, 1988Google Scholar
  10. 10.
    Giese A, Rief MD, Loo MA, Berens ME: Determinants of human astrocytoma migration. Cancer Res 54: 3897–3904, 1994Google Scholar
  11. 11.
    Ohnishi T, Arita N, Hiraga. S, Taki T, Izumoto S, Fukushima Y, Hayakawa T: Fibronectin-medirated cell migration promotes glioma cell invasion through chemokinetic activity. Clin Exp Metastasis 15: 538–546, 1997Google Scholar
  12. 12.
    Berens ME, Rief MD, Loo MA, Giese A: The role of extracellular matrix in human astrocytoma migration and proliferation studied in a microliter scale assay. Clin Exp Metastasis 12: 405–415, 1994Google Scholar
  13. 13.
    Tysnes BB, Larser LF, Ness GO, Mahesparan R, Edvardsen K, Garcia-Cabrera I, Bjerkvig R: Stimulation of glioma-cell migration by laminin and inhibition by antialpha3 and anti-betal integrin antibodies. Int J Cancer 67: 777–784, 1996Google Scholar
  14. 14.
    Giese A, Loo MA, Norman SA, Treasurywala S, Berens ME: Contrasting migratory response of astrocytoma cells to tenascin mediated by different integrins. J Cell Sci 109(Pt 8): 2161–2168, 1996Google Scholar
  15. 15.
    Kaczarek E, Zapf S, Bouterfa H, Tonn JC, Westphal M, Giese A: Dissecting glioma invasion: interrelation of adhesion, migration and intercellular contacts determine the invasive phenotype. Int J Dev Neurosci 17: 625–641, 1999Google Scholar
  16. 16.
    Mahesparan R, Tysnes BB, Read TA, Enger PO, Bjerkvig R, Lund-Johansen M: Extracellular matrix-induced cell migration from glioblastoma biopsy specimens in vitro. Acta Neuropathol (Berl) 97: 231–239, 1999Google Scholar
  17. 17.
    Leins A, Riva P, Lindstedt R, Davidoff MS, Mehraei P, Weis S: Expression of tenascin-C in various human brain tumors and its relevance for survival in patients with astrocytoma. Cancer 98: 2430–2439, 2003Google Scholar
  18. 18.
    Zagzag D, Friedlander DR, Miller DC, Dosik J, Cangiarella J, Kostianovsky M, Cohen H, Grumet M, Greco MA: Tenascin expression in astrocytomas correlates with angiogenesis. Cancer Res 55: 907–914, 1995Google Scholar
  19. 19.
    Zagzag D, Friedlander DR, Dosik J, Chikramane S, Chan W, Greco MA, Allen JC, Dorovini-Zis K, Grumet M: Tenascin-C expression by angiogenic vessels in human astrocytomas and by human brain endothelial cells in vitro. Cancer Res, 56: 182–189, 1996Google Scholar
  20. 20.
    Kostianovsky M, Greco MA, Cangiarella J, Zagzag D: Tenascin-C expression in ultrastructurally defined angiogenic and vasculogenic lesions. Ultrastruct Pathol 21: 537–544, 1997Google Scholar
  21. 21.
    Zagzag D, Capo V: Angiogenesis in the central nervous system: a role for vascular endothelial growth factor/ vascular permeability factor and tenascin-C. Common molecular effectors in cerebral neoplastic, and non-neoplastic ‘angiogenic diseases’. Histol Histopathol 17: 301–321, 2002Google Scholar
  22. 22.
    Plopper GE, McNamee HP, Dike LE, Bojanowski K, Ingber DE: Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol Biol Cell 6: 1349–1365, 1995Google Scholar
  23. 23.
    Guan JL, Shalloway D: Regulation of focal adhesionassociated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature 358: 690–692, 1992Google Scholar
  24. 24.
    Wenk MB, Midwood KS, Schwarzbauer JE: Tenascin-C suppresses Rho activation. J Cell Biol 150: 913–920, 2000Google Scholar
  25. 25.
    Mariani L, Beaudry C, McDonough WS, Hoelzinger DB, Demuth T, Ross KR, Berens T, Coons SW, Watts G, Trent JM, Wei JS, Giese A, Berens ME: Glioma cell motility is associated with reduced transcription of proapoptotic and proliferation genes: a cDNA microarray analysis. J Neurooncol 53: 161–176, 2001Google Scholar
  26. 26.
    Mahesparan R, Read TA, Lund-Johansen M, Skaftnesmo, KO, Bjerkvig R, Engebraaten O: Expression of extracellular matrix components in a highly infiltrative in vivo glioma model. Acta Neuropathol (Berl) 105: 49–57, 2003Google Scholar
  27. 27.
    Bigner DD, Brown M, Coleman RE, Friedman, AH, Friedman HS, McLendo RE, Bigner SH, Zhao XG, Wikstrand CJ, Pegram, CN, et al.: Phase I studies of treatment of malignant gliomas and neoplastic meningitis with 131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate Mel-14 F (ab')2– a preliminary report. J Neurooncol 24: 109–122, 1995Google Scholar
  28. 28.
    Kurpad SN, Zhao XG, Wikstrand CJ, Batra SK, McLendon RE, Bigner DD. Tumor antigens in astrocyti: gliomas. Glia 15: 244–256, 1995Google Scholar
  29. 29.
    Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, Herndon JE, 2nd, Cokgor I, McLendon RE, Pegram CN, Provenzale JM, Quinn JA, Rich JN, Regalado LV, Sampson JH, Shafman TD, Wikstrand CJ, Wong TZ, Zhao XG, Zalutsky MR, Bigner DD: Phase II trial of murine (131)I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J Clin Oncol 20: 1389–1397, 2002Google Scholar
  30. 30.
    Goetz C, Riva P, Poepperl G, Gildehaus FJ, Hischa A, Tatsch K, Reulen HJ: Locoregional radioimmunotherapy in selected patients with malignant glioma: experiences, side effects and survival times. J Neurooncol 62: 321–328, 2003Google Scholar
  31. 31.
    Lamszus K, Kunkel P, Westkphal M: Invasion as limitation to anti-angiogenic glioma therapy. Acta Neurochir Suppl 88: 169–177, 2003Google Scholar
  32. 32.
    Rempel SA, Golembieski WA, Ge S, Lemke N, Elisevich K, Mikkelsen T Gutierrez JA: SPARC: a signal of astrocytic neoplastic transformation and reactive response, in human primary and xenograft gliomas. J Neuropathol Exp Neurol 57: 1112–1121, 1998Google Scholar
  33. 33.
    Golembieski WA, Ge S, Nelson K, Mikkelsen T, Rempel SA: Increased SPARC expression promotes U87 glioblastoma invasion in vitro. Int J Dev Neurosci 17: 463–472, 1999Google Scholar
  34. 34.
    Vadlamuri SV, Media J, Sankey SS, Nakeff A, Divine G, Rempel SA: SPARC affects glioma cell growth differently when grown on brain ECM proteins in vitro under standard versus reduced-serum stress conditions. Neurooncol 5: 244–254, 2003Google Scholar
  35. 35.
    Golembieski WA, Rempel SA: cDNA array analysis of SPARC–modulated changes in glioma gene expression. J Neurooncol 60: 213–226, 2002Google Scholar
  36. 36.
    Burridge K, Chrzanowska-Wodnicka M: Focal adhesions, contractility and signaling. Annu Rev Cell Dev Biol 12: 463–518, 1996Google Scholar
  37. 37.
    Hynes RO: Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–687, 2002Google Scholar
  38. 38.
    Zamir E, Katz M, Posen Y, Erez N, Yamada KM, Katz BZ, Lin S, Lin DC, Bershadsky A, Kam Z, Geiger B: Dynamics and segregation of cell-matrix adhesions in cultures fibroblasts. Nat Cell Biol 2: 191–196, 2000Google Scholar
  39. 39.
    Friedl P, Wolf K: Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3: 362–374, 2003Google Scholar
  40. 40.
    Kinbara K, Goldfinger LE, Hansen M, Chou FL, Ginsberg MH: Ras GTPases: integrins' friends or foes? Nat Rev Mol Cell Biol 4: 767–776, 2003Google Scholar
  41. 41.
    Cukierman E, Pankov R, Stevens DR, Yamada KM: Taking cell-matrix adhesions to the third dimension. Science 294: 1708–1712, 2001Google Scholar
  42. 42.
    Rabinovitz I, Mercurio AM: The integrin alpha6beta4 functions in carcinoma cell migration on laminin-1 by mediating the formation and stabilization of actin-containing motility structures. J Cell Biol 139: 1873–1884, 1997Google Scholar
  43. 43.
    Leavesley DI, Ferguson GD, Wayner EA, Cheresh DA: Requirement of the integrin beta 3 subunit for carcinoma cell spreading or migration on vitronectin and fibrinogen. J Cell Bio 117: 1101–1107, 1992Google Scholar
  44. 44.
    Maaser K, Wolf K, Klein CE, Niggemann B, Zanker KS, Brocker EB, Friedl P: Functional hierarchy of simultaneously expressed adhesion receptors integrin alpha2beta but not CD44 mediates MV3 melanoma cell migration and matrix reorganization within three-dimensional hyaluronan containing collagen matrices. Mol Biol Cell 10: 3067–3079, 1999Google Scholar
  45. 45.
    Paulus W, Baur I, Beutler AS, Reeves SA: Diffuse brain invasion of glioma cells requires beta 1 integrins. Lab Invest 75: 819–826, 1996Google Scholar
  46. 46.
    Tonn JC, Wunderlich S, Kerkau S, Klein CE, Roosen K: Invasive behaviour of human gliomas is mediated by interindividually different integrin patterns. Anticancer Res 18: 2599–2605, 1998Google Scholar
  47. 47.
    Rooprai HK, Vanmeter T, Panou C, Schnull S, Trillo-Pazos G, Davies D, Pilkinton GJ: The role of integrin receptors in aspects of glioma invasion in vitro. Int J Dev Neurosci 17: 613–623, 1999Google Scholar
  48. 48.
    Deryugina EI, Bourdon MA: Tenascin mediates human glioma cell migration and modulates cell migration on fibronectin. J Cell Sci 109 ( Pt 3): 643–652, 1996Google Scholar
  49. 49.
    Platten M, Wick W, Wild-Bode C, Aulwurm S, Dichgans J, Wellr M: Transforming growth factors beta(1) (TGFbeta( 1)) and TGF-beta(2) promote glioma cell migration via Up-regulation of alpha(V)beta(3) integrin expression. Biochem Biophys Res Commun 268: 607–611, 2000Google Scholar
  50. 50.
    Belot N, Rorive S, Doye I Lefranc F, Bruyneel E, Dedecker R, Micik S, Brotchi J, Decaestecker C, Salmon I, Kiss R, Camby I: Molecular characterization of cell substratum attachments in human glial tumors relates to prognostic features. Glia 36: 375–390, 2001Google Scholar
  51. 51.
    Taga T, Suzuki A, Gonzalez-Gomez I, Gilles FH, Stins M, Shimada H, Barsky L, Weinberg KI, Laug WE: alpha v-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int J Cancer 98: 690–697, 2002Google Scholar
  52. 52.
    MacDonald TJ, Taga T, Shimada H, Tabrizi, P, Zlokovic BV, Cheresh DA, Laug WE: Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha(v) integrin antagonist. Neurosurgery 48: 151–157 2001Google Scholar
  53. 53.
    Phase I Study of Cilengitide (EMD 121974) in Children With Refractory Primary Brain Tumors. Pediatric Brain Tumor Consortium, 2003.Google Scholar
  54. 54.
    Phase I Study of EMD 121974 in Patients With Advanced Solid Tumors. University of Colorado Cancer Center at University of Colorado Health Sciences Center, 2003Google Scholar
  55. 55.
    Frisch SM, Francis H: Disruption epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124: 619–626, 1994Google Scholar
  56. 56.
    Zhang Z, Vuori K, Reed JC, Ruoslahti E: The alpha 5 beta 1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc Natl Acad Sci USA 92: 6161–6165, 1995Google Scholar
  57. 57.
    Nollet F, Kools P, van Roy F: Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 299: 551–572, 2000Google Scholar
  58. 58.
    Gumbiner BM: Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84: 345–357, 1996Google Scholar
  59. 59.
    Perez-Moreno M, Jamora, C, Fuchs E: Sticky business: orchestrating cellular signals at adherens junctions. Cell 112: 535–548, 2003Google Scholar
  60. 60.
    Vasioukhin V, Bauer C, Yin M, Fuchs E: Directed actin polymerization is the driving force for epithelial cell–cell adhesion. Cell 100: 209–219, 2000Google Scholar
  61. 61.
    Bremnes RM, Veve R, Hirsch FR, Franklin WA: The Ecadherin cell-cell adhesion complex and lung cancer invasion, metastasis, and prognosis. Lung Cancer 36: 115–124, 2002Google Scholar
  62. 62.
    Chen WC, Obrink B: Cell–cell contacts mediated by Ecadherin (uvomorulin) restrict invasive behavior of L-cells. J Cell Biol 114: 319–327, 1991Google Scholar
  63. 63.
    Vleminckx K, Vakaet L Jr, Mareel M, Fiers W, van Roy F: Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66: 107–119, 1991Google Scholar
  64. 64.
    Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronsor SA: Exogenous expression of N-cadherin in breast-gander cells induces cell migration, invasion, and metastasis. J Cell Biol 148: 779–790, 2000Google Scholar
  65. 65.
    Shinoura N, Paradies NE, Warnick RE, Chen H, Larson JJ, Tew JJ, Simon M, Lynch RA, Kanai Y, Hirohashi S, et al: Expression of N-cadhri and alpha-catenin in astrocytomas and glioblastomas. Br J Cancer 72: 627–633, 1995Google Scholar
  66. 66.
    Kotelevets L, van Hengel J, Bruyneel E, Mareel M, van Roy, F, Chastre E: The lipid phosphatase activity of PTEN is critical for stabilizing intercellular junctions and reverting invasiveness. J Cell Biol 155: 1129–1135, 2001Google Scholar
  67. 67.
    Utsuki S, Sato Y, Oka H, Tsuchiya B, Suzuki S, Fujii K: Relationship between the expression of E-, N-cadherins and beta-catenin and tumor grade in astrocytomas. J Neurooncol 57: 187–192, 2002Google Scholar
  68. 68.
    Perego C, Vanoni C, Massari S, Longhi R, Pietrini G: Mammalian LIN-7. PDZ proteins associate with betacatenin at the cell–cell junctions of epithelia and neurons. Embo J 19: 3978–3989, 2000Google Scholar
  69. 69.
    Gumbiner BM: Signal transduction of beta-catenin. Curr Opin Cell Biol 7: 634–640, 1995Google Scholar
  70. 70.
    Hsueh YP, Wang TF, Yang FC, Sheng M: Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature 404: 298–302, 2000Google Scholar
  71. 71.
    Merzak A, Koocheckpour S, Pilkington GJ: CD44 mediates human glioma cell adhesion and invasion in vitro. Cancer Res 54: 3988–3992, 1994Google Scholar
  72. 72.
    Prag S, Lepekhin EA, Kolkova K, Hartmann-Petersen R, Kawa A, Walmod PS, Belman V, Gallagher H, C, Berezin V, Bock E, Pedersen N: NCAM regulates cell motility. J Cell Sci 115: 283–292, 2002Google Scholar
  73. 73.
    Hikawa T, Mori T, Abe T, Hori S: The ability in adhesion and invasion of drug-resistant human glioma cells. J Exp Clin Cancer Res 19: 357–362, 2000Google Scholar
  74. 74.
    Teicher BA, Herman TS, Holden SA, Wang YY, Pfeffer MR, Crawford JW, Frei E 3rd: Tumor'resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 247: 1457–1461, 1990Google Scholar
  75. 75.
    Frankel A, Buckman R, Kerbel RS: Abrogation of taxolinduced G2-M arrest apoptosis in human ovarian cancer cells grown as multicellular tumor spheroids. Cancer Res 57: 2388–2393, 1997Google Scholar
  76. 76.
    Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, and Dalton WS: Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93: 1658–1667, 1999Google Scholar
  77. 77.
    de la Fuente MT, Casanova B, Garcia-Gila M, Silva A Garcia-Parda A: Fibronectin interaction with atpha4beta1 integrin prevents apoptosis in B cell chronic lymphocytic leukemia: correlation with Bcl-2 and Bax. Leukemia 13 266–274, 1999Google Scholar
  78. 78.
    Hazlehurst LA, Valkov N, Wisner L, Storey JA, Boulware D, Sullivan DM, Dalton WS: Reduction in drug-induce DNA double-strand breaks associated with beta1 integrinmediated adhesion correlates with drug resistance in U937 cells. Blood 98: 1897–1903, 2001Google Scholar
  79. 79.
    Bruzzone R, White TW, Paul DL: Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238: 1–27, 1996Google Scholar
  80. 80.
    Goodenough DA, Goliger JA, Paul DL: Connexins, connexons, and intercellular communication. Annu Rev Biochem 65: 475–502, 1996Google Scholar
  81. 81.
    Ruch RJ: The role of gap junctional intercellular communication in neoplasia. Ann Clin Lab Sci 24: 216–231, 1994Google Scholar
  82. 82.
    Dermietzel R, Spray DC: Gap junctions in the brain: where, what type, how many and why? Trends Neurosci 16: 186–192, 1993Google Scholar
  83. 83.
    McDonough WS, Johansson A, Jorfee H, Giese A, Berens ME: Gap junction intercellular communication in gliomas is inversely related to cell motility. Int J Dev Neurosci 17: 601–611, 1999Google Scholar
  84. 84.
    Soroceanu L, Manning TJ Jr, Sontheimer H: Reduced expression of connexin-43 and functional gap junction coupling in human gliomas. Glia 33: 107–117, 2001Google Scholar
  85. 85.
    Lin JH, Takano T, Cotrina ML, Arcuino G, Kang J, Liu S, Gao Q, Jiang L, Li F, Lichtenberg-Frate H, Haubrich S Willecke K, Goldman SA, Nedergaard M: Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells. J Neurosci 22: 4302–4311, 2002Google Scholar
  86. 86.
    Huang RP, Fan Y, Hossain MZ, Peng A, Zeng ZL, Boynton AL: Reversion of the neoplastic phenotype of human glioblastoma cells by connexin 43 (cx43). Cancer Res 58: 5089–5096, 1998Google Scholar
  87. 87.
    Huang RP, Hossain MZ, Sehgal A, Boynton AL: Reduced connexin43 expression in high-grade human brain glioma cells. J Surg Oncol 70: 21–74, 1999Google Scholar
  88. 88.
    Huang R, Lin Y, Wang CC, Gano J, Lin B, Shi Q, Boynton A, Burke J, Huang RP: Connexin 43 suppresses human glioblastoma cell growth by down-regulation of monocyte chemotactic protein 1, as discovered using protein array technology. Cancer Res 62: 2806–2812, 2002Google Scholar
  89. 89.
    Huang RP, Hossain MZ, Huang R, Gano J, Fan Y, Boynton AL: Connexin 43(cx43) enhances chemotherapyinduced apoptosis in human glioblastoma cells. Int J Cancer 92: 130–138, 2001Google Scholar
  90. 90.
    Tonn JC, Goldbrunner R: Mechanisms of glioma cell invasion. Acta Neurochir Suppl 88: 163–167, 2003Google Scholar
  91. 91.
    Tonn JC, Kerkau S, Hanke A, Bouterfa H, Mueller JG, Wagner S, Vince GH, Roosen K: Effect of synthetic matrix-metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int J Cancer 80: 764–772, 1999Google Scholar
  92. 92.
    Demchik LL, Sameni M, Nelson K, Mikkelsen T, Sloane BF: Cathepsin B and glioma invasion. Int J Dev Neurosci 17: 483–494, 1999Google Scholar
  93. 93.
    Rempel SA, Rosenblum ML, Mikkelsen T, Yan. PS, Ellis KD, Golembieski WA, Sameni M, Rozhin J, Ziegler G, Sloane BF: Cathepsin B expression and localization in glioma progression and invasion. Cancer Res 54: 6027–6031, 1994Google Scholar
  94. 94.
    Sivaparvathi M, Sawaya R, Wang SW, Rayford A, Yamamoto M, Liotta LA, Nicolson GL, Rao JS: Overexpression and localization of cathepsin B during the progression of human gliomas. Clin Exp Metastasis 13: 49–56, 1995Google Scholar
  95. 95.
    Mohanam S, Jasti SL, Kondraganti SR, Chandrasekar N, Lakka SS, Kin Y, Fuller GN, Yung AW, Kyritsis AP, Dinh DH; Olivero WC, Gujrati M, Ali-Osman F, Rao JS: Down-regulation of cathepsin B expression impairs the invasive and tumorigenic potential of human glioblastoma cells. Oncogene 20: 3665–3673, 2001Google Scholar
  96. 96.
    Levicar N, Dewey RA, Daley E, Bates TE, Davies D, Kos J, Pilkington GJ, and Lah TT: Selective suppression of cathepsin L by antisense cDNA impairs human braintumor cell invasion in vitro and promotes apoptosis. Cancer Gene Then 10: 141–151, 2003Google Scholar
  97. 97.
    Etienne-Manneville S, Hall A: Rho GTPases in cell biology. Nature 420; 629–635, 2002Google Scholar
  98. 98.
    Ridley AJ, Hall A: The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389–399, 1992Google Scholar
  99. 99.
    Clark EA, Golub TR, Lander ES, Hynes RO: Genomic analysis of metastasis reveals an essential role for RhoC. Nature, 406: 532–535, 2000Google Scholar
  100. 100.
    Forget MA, Desrosiers RR, Del M, Moumdjian R, Shedid D, Berthelet F, Beliveau R: The expression of rho proteins decreases with human brain tumor progression: potential tumor markers. Clin Exp Metastasis 19: 9–15, 2002Google Scholar
  101. 101.
    Ding Q, Stewart J Jr, Prince CW, Chang PL, Trikha M, Han X, Grammer JR, Gladson CL: Promotion of malignant astrocytoma cell migration by osteopontin expressed in the normal brain: differences in integrin signaling during cell adhesion to osteopontin versus vitronectin. Cancer Res 62: 5336–5343, 2002Google Scholar
  102. 102.
    Senger DL, Tudan C, Guiot MC, Mazzoni IE, Molenkamp G, LeBlanc R, Antel J, Olivier A, Snipes GJ, Kaplan DR: Suppression of Rac activity induces apoptosis of human glioma cells but not normal human astrocytes. Cancer Res, 62: 2131–2140, 2002Google Scholar
  103. 103.
    Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A: The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell, 70: 401–410, 1992Google Scholar
  104. 104.
    Nobes CD, Lauritzen I, Mattei MG, Paris S, Hall A, Chardin P: A new mem be of the Rho family, Rnd1 promotes disassembly of actin filament structures and loss of cell adhesion. J Cell Biol 141: 187–197, 1998Google Scholar
  105. 105.
    Nobes CD, Hall A: Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81: 53–62, 1995Google Scholar
  106. 106.
    Michiels F, Habets GG, Stam JC, van der Kammen RA, Collard JG: A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature 375: 338–340, 1995Google Scholar
  107. 107.
    Van Aelst L, D'souza-Schorey C: Rho GTPases and signaling networks. Genes Dev 11: 2295–2322, 1997Google Scholar
  108. 108.
    Cary LA, Guan JL: Focal adhesion kinase in integrinmediated signaling. Front: Biosci, 4: D102–113, 1999Google Scholar
  109. 109.
    Hauck CR, Hsia DA, Schlaepfer DD: The focal adhesion kinase – a regulator of cell migration and invasion. IUBMB Life 53: 115–119, 2002Google Scholar
  110. 110.
    Obara S, Nakata M, Takeshima H, Kuratsu J, Maruyama I, Kitajima I: Inhibition of migration of human glioblastoma cells by cerivastatin in association with focal adhesion kinase (FAK). Cancer Lett 185: 153–161, 2002Google Scholar
  111. 111.
    Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L, Liu E T, Cance W G: Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res 55: 2752–2755, 1995Google Scholar
  112. 112.
    Jones G, Machado J Jr, Merlo A: Loss of focal adhesion kinase (FAK) inhibits epidermal growth factor receptordependent migration and induces aggregation of nh(2)-terminal FAK in the nuclei of apoptotic glioblastoma cells. Cancer Res, 61: 4978–4981, 2001Google Scholar
  113. 113.
    Zagzag D, Friedlander DR, Margolis B, Grumet M, Semenza GL, Zhong H, Simons JW, Holash. J, Wiegand, SJ, Yancopoulos GD: Molecular events implicated in brain tumor angiogenesis and invasion. Pediatr Neurosurg 33: 49–55, 2000Google Scholar
  114. 114.
    Menegon A, Burgaya F, Baudot P, Dunlap DD, Girault JA, Valtorta F: FAK+ and PYK2/CAKbeta, two related tyrosine kinases highly expressed in the central nervous system: similarities and differences in the expression pattern. Eur J Neurosci 11: 3777–3788, 1999Google Scholar
  115. 115.
    Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, Plowman GD, Rudy B, Schlessinger J: Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature 376: 737–745, 1995Google Scholar
  116. 116.
    Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY: Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 134: 793–799, 1996Google Scholar
  117. 117.
    Xiong W, Parsons JT: Induction of apoptosis after expression of PYK2, a tyrosine kinase structurally relatedto focal adhesion kinase. J Cell Biol 139: 529–539, 1997Google Scholar
  118. 118.
    Lipinski CA, Tran NL, Bay C, Kloss J, McDonough WS, Beaudry C, Berens ME, Loftus JC: Differential role of proline-rich tyrosine kinase 2 and focal adhesion kinase in determining glioblastoma migration and proliferation. Mol Cancer Res 1: 323–332, 2003Google Scholar
  119. 119.
    Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd C, Pohl U, Hartmann C, McLaughlin ME, Batchelor TT, Black PM, von Deimling A, Pomero SL, Goluh TR Louis DN: Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 63: 1602–1607, 2003Google Scholar
  120. 120.
    Sallinen SL, Sallinen PK, Haapasalo HK, Helin HJ, Helen, PT, Schraml P, Kallioniemi OP, Kononen J: Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res 60: 6617–6622, 2000Google Scholar
  121. 121.
    Mischel PS, Shai R, Shi T, Horvath S, Lu KV, Choe G, Seligson D, Kremen TJ, Palotie A, Liau LM, Cloughesy TF, Nelson SF: Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene 22: 2361–7373, 2003Google Scholar
  122. 122.
    Studler JM, Glowinski J, Levi-Strauss M: An abundant mRNA of the embryonic brain persists at a high level in cerebellum, hippocampus and olfactory bulb during adulthood. Eur J Neurosci 5: 614–623, 1993Google Scholar
  123. 123.
    Mariani L, McDonough WS, Hoelzinger DB, Beaudry C, Kaczmarek E, Coons SW, Giese A, Moghaddam M, Seiler RW, Berens ME: Identification and validation of P311 as a glioblastoma invasion gene using laser capture microdissection. Cancer Res, 61: 4190–4196, 2001Google Scholar
  124. 124.
    Kissil JL, Deiss LP, Bayewitch M, Raveh T, Khaspekov G, Kimchi A: Isolation of DAP3, a novel mediator of interferon-gamma-induced cell death. J Biol Chem 270: 27932–27936, 1995Google Scholar
  125. 125.
    Kissil JL, Cohen O, Raveh T, Kimchi A: Structurefunction analysis of an evolutionary conserved protein, DAP3, which mediates TNF-alpha-and Fas-induced cell death. Embo J 18: 353–362, 1999Google Scholar
  126. 126.
    Mariani L, Beaudry C, McDonough WS, Hoelzinger DB, Kaczmarek E, Ponce F, Coons SW, Giese A, Seiler RW, Berens ME: Death associated protein 3 (Dap-3) is overexpressed in invasive glioblastoma cells in vivo and in glioma cell lines with induced motility phenotype in vitro. Clin Cancer Res. 7: 2480–2489, 2001Google Scholar
  127. 127.
    Taylor GA, Hudson E, Resau JH, Vande Woude GF: Regulation of P311 expression by Met-hepatocyte growth factor/scatter factor and the ubiquitin/proteasome system. J Biol Chern. 275: 4215–4219, 2000Google Scholar
  128. 128.
    Tran NL, McDonough WS, Donohue PJ, Winkles JA, Berens TJ, Ross KR, Hoelzinger DB, Beaudry C, Coons SW, Berens ME: The human Fn14 receptor gene is upregulated in migrating glioma cells in vitro and overexpressed in advanced glial tumors. Am J Pathol 162: 1313–1321, 2003Google Scholar
  129. 129.
    Wiley SR, Winkles JA: TWEAK, a member of the TNF superfamily, is a multifunctional cytokine that binds the TweakR/Fnl4 receptor. Cytokine Growth Factor Rev 14: 241–249, 2003Google Scholar
  130. 130.
    Joy AM, Beaudry CE, Tran NL Ponce FA, Holz DR, Demuth T, Berens ME: Migrating glioma cells activate the PI3-K pathway and display decreased susceptibility to apoptosis. J Cell Sci. 116: 4409–4417, 2003Google Scholar
  131. 131.
    Cantley LC, Neel BG: New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase AKT pathway. Proc Natl Acad Sci USA 96: 4240–4245, 1999Google Scholar
  132. 132.
    CBTRUS 2002: Statistical Report: Primary Brain Tumorsin the United States, 1995–1999: Central Brain Tumor Registry of the United States, 2002Google Scholar
  133. 133.
    Matsukado Y, Maccarty CS, Kernohan JW: The growth of glioblastoma multiforme (astrocytomas, grades 3 and 4) in neurosurgical practice. J Neurosurg 18: 636–644, 1961Google Scholar
  134. 134.
    Dandy W: Removal of the right hemisphere for certain tumors with hemiplegia: preliminary report. J Am Med Assoc 90: 823–825, 1928Google Scholar
  135. 135.
    Bell E, LJ K: Cerebral hemispherectomy: report of a case ten years after operation. J Neurosurg 6: 285–293, 1949Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Tim Demuth
    • 1
  • Michael E. Berens
    • 1
  1. 1.TGenThe Translational Genomics Research InstitutePhoenixUSA

Personalised recommendations