Journal of Neuro-Oncology

, Volume 70, Issue 2, pp 203–215 | Cite as

Molecular pathogenesis of childhood brain tumors

  • Torsten Pietsch
  • Michael D. Taylor
  • James T. Rutka
Article

Abstract

In the last decade, the molecular biology revolution has advanced considerably. These advances have enhanced our understanding of the genetic underpinnings of human brain tumors in general, and pediatric brain tumors in particular. We now know that many pediatric brain tumors arise from disturbances in developmentally regulated signaling pathways. The medulloblastoma, a tumor in which the developmental Hedgehog and WNT pathways have gone awry, is a prime example of this. New techniques in genetic engineering have allowed for the creation of sophisticated mouse models of brain tumors that recapitulate the human disease. Many laboratories are now using cDNA microarrays to study the expression level of thousands of genes that may be aberrantly expressed in brain tumors when compared to normal control cells. In the next decade, the use of several new molecular techniques to establish brain tumor diagnoses will likely become standard tools in the diagnostics and treatment stratification of children with central nervous system tumors.

atypical teratoid/rhabdoid tumor choroid plexus tumors ependymoma medulloblastoma molecular genetics pilocytic astrocytoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Giangaspero F, Bigner SH, Kleihues P, Pietsch T, Trojanowski PQ: Medulloblastoma. In: Kleihues P, Cavenee W (eds) Pathology and Genetics of Tumours of the Central Nervous System, 2nd edn. IARC Press, Lyon; 2000, pp 129–137Google Scholar
  2. 2.
    Khalili K, Krynska B, Del Valle L, Katsetos CD, Croul S: Medulloblastomas and the human neurotropic polyomavirus JC virus [letter]. Lancet 353: 1152–1153, 1999Google Scholar
  3. 3.
    Nagashima K, Yasui K, Kimura J, Washizu M, Yamaguchi K, Mori W: Induction of brain tumors by a newly isolated JC virus (Tokyo-1 strain). Am J Pathol 116: 455–463, 1984Google Scholar
  4. 4.
    Zu Rhein GM, Varakis JN: Perinatal induction of medulloblastomas in Syrian golden hamsters by a human polyoma virus (JC). Natl Cancer Inst Monogr 205–208, 1979Google Scholar
  5. 5.
    Huang H, Reis R, Yonekawa Y, Lopes JM, Kleihues P, Ohgaki H: Identification in human brain tumors of DNA sequences specific for SV40 large T antigen. Brain Pathol 9: 33–42, 1999Google Scholar
  6. 6.
    Weggen S, Bayer TA, von Deimling A, Reifenberger G, von Schweinitz D, Wiestler OD, Pietsch T: Low frequency of SV40, JC and BK polyomavirus sequences in human medulloblastomas, meningiomas and ependymomas. Brain Pathol 10: 85–92, 2000Google Scholar
  7. 7.
    Kim JY, Koralnik IJ, LeFave M, Segal RA, Pfister LA, Pomeroy SL: Medulloblastomas and primitive neuroectodermal tumors rarely contain polyomavirus DNA sequences. Neurooncol 4: 165–170, 2002Google Scholar
  8. 8.
    Biegel JA, Rorke LB, Packer RJ, Sutton LN, Schut L, Bonner K, Emanuel BS: Isochromosome 17q in primitive neuroectodermal tumors of the central nervous system. Genes Chromosomes Cancer 1: 139–147, 1989Google Scholar
  9. 9.
    Bigner SH, Vogelstein B: Cytogenetics and molecular genetics of malignant gliomas and medulloblastoma. Brain Pathol 1: 12–18, 1990Google Scholar
  10. 10.
    Blaeker H, Rasheed BK, McLendon RE, Friedman HS, Batra SK, Fuchs HE, Bigner SH: Microsatellite analysis of childhood brain tumors. Genes Chromosomes Cancer 15: 54–63, 1996Google Scholar
  11. 11.
    Reardon DA, Michalkiewicz E, Boyett JM, Sublett JE, Entrekin RE, Ragsdale ST, Valentine MB, Behm FG, Li H, Heideman RL, Kun LE, Shapiro DN, Look AT: Extensive genomic abnormalities in childhood medulloblastoma by comparative genomic hybridization. Cancer Res 57: 4042–4047, 1997Google Scholar
  12. 12.
    Bigner SH, McLendon RE, Fuchs H, McKeever PE, Friedman HS: Chromosomal characteristics of childhood brain tumors. Cancer Genet Cytogenet 97: 125–134, 1997Google Scholar
  13. 13.
    Yin XL, Pang JC, Liu YH, Chong EY, Cheng Y, Poon WS, Ng HK: Analysis of loss of heterozygosity on chromosomes l0q, 11, and 16 in medulloblastomas. J Neurosurg 94: 799–805, 2001Google Scholar
  14. 14.
    Schutz BR, Scheurlen W, Krauss J, du Manoir S, Joos S, Bentz M, Lichter P: Mapping of chromosomal gains and losses in primitive neuroectodermal tumors by comparative genomic hybridization. Genes Chromosomes Cancer 16: 196–203, 1996Google Scholar
  15. 15.
    Avet-Loiseau H, Venuat AM, Terrier-Lacombe MJ, Lellouch-Tubiana A, Zerah M, Vassal G: Comparative genomic hybridization detects many recurrent imbalances in central nervous system primitive neuroectodermal tumours in children. Br J Cancer 79: 1843–1847, 1999Google Scholar
  16. 16.
    Jay V, Squire J, Bayani J, Alkhani AM, Rutka JT, Zielenska M: Oncogene amplification in medulloblastoma: analysis of a case by comparative genomic hybridization and fluorescence in situ hybridization. Pathology 31: 337–344, 1999Google Scholar
  17. 17.
    Nicholson J, Wickramasinghe C, Ross F, Crolla J, Ellison D: Imbalances of chromosome 17 in medulloblastomas determined by comparative genomic hybridisation and fluorescence in situ hybridisation. Mol Pathol 53: 313–319, 2000Google Scholar
  18. 18.
    Gilhuis HJ, Anderl KL, Boerman RH, Jeuken JM, James CD, Raffel C, Scheithauer BW, Jenkins RB: Comparative genomic hybridization of medulloblastomas and clinical relevance: eleven new cases and a review of the literature. Clin Neurol Neurosurg 102: 203–209, 2000Google Scholar
  19. 19.
    Bayani J, Zielenska M, Marrano P, Kwan Ng Y, Taylor MD, Jay V, Rutka JT, Squire JA: Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping. J Neurosurg 93: 437–448, 2000Google Scholar
  20. 20.
    Reardon DA, Jenkins JJ, Sublett JE, Burger PC, Kun LK: Multiple genomic alterations including N-myc amplification in a primary large cell medulloblastoma. Pediatr Neurosurg 32: 187–191, 2000Google Scholar
  21. 21.
    Tong CY, Hui AB, Yin XL, Pang JC, Zhu XL, Poon WS, Ng HK: Detection of oncogene amplifications in medulloblastomas by comparative genomic hybridization and array-based comparative genomic hybridization. J Neurosurg 100: 187–193, 2004Google Scholar
  22. 22.
    Tomlinson FH, Jenkins RB, Scheithauer BW, Keelan PA, Ritland S, Parisi JE, Cunningham J, Olsen KD: Aggressive medulloblastoma with high-level N-myc amplification. Mayo Clin Proc 69: 359–365, 1994Google Scholar
  23. 23.
    Badiali M, Pession A, Basso G, Andreini L, Rigobello L, Galassi E, Giangaspero F: N-myc and c-myc oncogenes amplification in medulloblastomas. Evidence of particularly aggressive behavior of a tumor with c-myc amplification. Tumori 77: 118–121, 1991Google Scholar
  24. 24.
    Herms J, Neidt I, Luscher B, Sommer A, Schurmann P, Schroder T, Bergmann M, Wilken B, Probst-Cousin S, Hernaiz-Driever P, Behnke J, Hanefeld F, Pietsch T, Kretzschmar HA: C-MYC expression in medulloblastoma and its prognostic value. Int J Cancer 89: 395–402, 2000Google Scholar
  25. 25.
    Eberhart CG, Kratz JE, Schuster A, Goldthwaite P, Cohen KJ, Perlman EJ, Burger PC: Comparative genomic hybridization detects an increased number of chromosomal alterations in large cell/anaplastic medulloblastomas. Brain Pathol 12: 36–44, 2002Google Scholar
  26. 26.
    Scheurlen WG, Schwabe GC, Joos S, Mollenhauer J, Sorensen N, Kuhl J: Molecular analysis of childhood primitive neuroectodermal tumors defines markers associated with poor outcome. J Clin Oncol 16: 2478–2485, 1998Google Scholar
  27. 27.
    Aldosari N, Bigner SH, Burger PC, Becker L, Kepner JL, Friedman HS, McLendon RE: MYCC and MYCN oncogene amplification in medulloblastoma. A fluorescence in situ hybridization study on paraffin sections from the Children's Oncology Group. Arch Pathol Lab Med 126: 540–544, 2002Google Scholar
  28. 28.
    Steichen-Gersdorf E, Baumgarmer M, Kreczy A, Maier H, Fink FM: Deletion mapping on chromosome 17p in medulloblastoma. Br J Cancer 76: 1284–1287, 1997Google Scholar
  29. 29.
    Cogen PH, Daneshvar L, Metzger AK, Duyk G, Edwards MS, Sheffield VC: Involvement of multiple chromosome 17p loci in medulloblastoma tumorigenesis. Am J Hum Genet 50: 584–589, 1992Google Scholar
  30. 30.
    Koch A, Tonn J, Kraus JA, So¨ rensen N, Albrecht NS, Wiestler OD, Pietsch T: Molecular analysis of the lissencephaly gene 1 (LIS-1) in medulloblastomas. Neuropathol Appl Neurobiol 22: 233–242, 1996Google Scholar
  31. 31.
    Adesina AM, Nalbantoglu J, Cavenee WK: p53 gene mutation and mdm2 gene amplification are uncommon in medulloblastoma. Cancer Res 54: 5649–5651, 1994Google Scholar
  32. 32.
    Biegel JA, Burk CD, Barr FG, Emanuel BS: Evidence for a 17p tumor related locus distinct from p53 in pediatric primitive neuroectodermal tumors. Cancer Res 52: 3391–3395, 1992Google Scholar
  33. 33.
    Ohgaki H, Eibl RH, Wiestler OD, Yasargil MG, Newcomb EW, Kleihues P: p53 mutations in nonastrocytic human brain tumors. Cancer Res 51: 6202–6205, 1991Google Scholar
  34. 34.
    Waha A, Koch A, Meyer-Puttlitz B, Weggen S, Sorensen N, Tonn JC, Albrecht S, Goodyer CG, Berthold F, Wiestler OD, Pietsch T: Epigenetic silencing of the HIC-1 gene in human medulloblastomas. J Neuropathol Exp Neurol 62: 1192–1201, 2003Google Scholar
  35. 35.
    Pietsch T, Waha A, Koch A, Kraus J, Albrecht S, Tonn J, So¨ rensen N, Berthold F, Henk B, Schmandt N, Wolf HK, von Deimling A, Wainwright B, Chenevix-Trench G, Wiestler OD, Wicking C: Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res 57: 2085–2088, 1997Google Scholar
  36. 36.
    Schofield D, West DC, Anthony DC, Marshal R, Sklar J: Correlation of loss of heterozygosity at chromosome 9q with histological subtype in medulloblastomas. Am J Pathol 146: 472–480, 1995Google Scholar
  37. 37.
    Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim JY, Goumnerova LC, Black PM, Lau C, Allen JC, Zagzag D, Olson JM, Curran T, Wetmore C, Biegel JA, Poggio T, Mukherjee S, Rifkin R, Califano A, Stolovitzky G, Louis DN, Mesirov JP, Lander ES, Golub TR: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415: 436–442, 2002Google Scholar
  38. 38.
    Buhren J, Christoph AH, Buslei R, Albrecht S, Wiestler OD, Pietsch T: Expression of the neurotrophin receptor p75NTR in medulloblastomas is correlated with distinct histological and clinical features: evidence for a medulloblastoma subtype derived from the external granule cell layer. J Neuropathol Exp Neurol 59: 229–240, 2000Google Scholar
  39. 39.
    Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL, Scott MP, Pennica D, Goddard A, Phillips H, Noll M, Hooper JE, de Sauvage F, Rosenthal A: The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog [see comments]. Nature 384: 129–134, 1996Google Scholar
  40. 40.
    Walterhouse DO, Yoon JW, lannaccone PM: Developmental pathways: sonic hedgehog-patched-GLI [in process citation]. Environ Health Perspect 107: 167–171, 1999Google Scholar
  41. 41.
    Alcedo J, Noll M: Hedgehog and its patched-smoothened receptor complex: a novel signalling mechanism at the cell surface. Biol Chem 378: 583–590, 1997Google Scholar
  42. 42.
    Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A, Vorechovsky I, Holmberg E, Unden AB, Gillies S, Negus K, Smyth I, Pressman C, Leffell DJ, Gerrard B, Goldstein AM, Dean M, Toftgard R, Chenevix-Trench G, Wainwright B, Bale AE: Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85: 841–851, 1996Google Scholar
  43. 43.
    Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, Quinn AG, Myers RM, Cox DR, Epstein EH Jr, Scott MP: Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272: 1668–1671, 1996Google Scholar
  44. 44.
    Vorechovsky I, Tingby O, Hartman M, Stromberg B, Nister M, Collins VP, Toftgard R: Somatic mutations in the human homologue of Drosophila patched in primitive neuroectodermal tumours. Oncogene 15: 361–366, 1997Google Scholar
  45. 45.
    Wolter M, Reifenberger J, Sommer C, Ruzicka T, Reifenberger G: Mutations in the human homologue of the Drosophila segment polarity gene patched (PTCH) in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 57: 2581–2585, 1997Google Scholar
  46. 46.
    Xie J, Johnson RL, Zhang X, Bare JW, Waldman FM, Cogen PH, Menon AG, Warren RS, Chen LC, Scott MP Epstein EH Jr: Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res 57: 2369–2372, 1997Google Scholar
  47. 47.
    Raffel C, Jenkins RB, Frederick L, Hebrink D, Alderete B, Fults DW, James CD: Sporadic medulloblastomas contain PTCH mutations. Cancer Res 57: 842–845, 1997Google Scholar
  48. 48.
    Xie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C, Bonifas JM, Lam CW, Hynes M, Goddard A, Rosenthal A, Epstein EH Jr, de Sauvage FJ: Activating smoothened mutations in sporadic basal-cell carcinoma. Nature 391: 90–92, 1998Google Scholar
  49. 49.
    Reifenberger J, Wolter M, Weber RG, Megahed M, Ruzicka T, Lichter P, Reifenberger G: Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58: 1798–1803, 1998Google Scholar
  50. 50.
    Smyth I, Narang MA, Evans T, Heimann C, Nakamura Y, Chenevix-Trench G, Pietsch T, Wicking C, Wainwright BJ: Isolation and characterization of human patched 2 (PTCH2), a putative tumour suppressor gene inbasal cell carcinoma and medulloblastoma on chromosome 1p32. Hum Mol Genet 8: 291–297, 1999Google Scholar
  51. 51.
    Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X, Agatep R, Chiappa S, Gao L, Lowrance A, Hao A, Goldstein AM, Stavrou T, Scherer SW, Dura WT, Wainwright B, Squire JA, Rutka JT, Hogg D: Mutations in SUFU predispose to medulloblastoma. Nat Genet 31: 306–310, 2002Google Scholar
  52. 52.
    Wechsler-Reya RJ, Scott MP: Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog [see comments]. Neuron 22: 103–114, 1999Google Scholar
  53. 53.
    Goodrich LV, Scott MP: Hedgehog and patched in neural development and disease. Neuron 21: 1243–1257, 1998Google Scholar
  54. 54.
    Goodrich LV, Milenkovic L, Higgins KM, Scott MP: Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277: 1109–1113, 1997Google Scholar
  55. 55.
    Hahn H, Wojnowski L, Zimmer AM, Hall J, Miller G, Zimmer A: Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 4: 619–622, 1998Google Scholar
  56. 56.
    Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, Scott MP, Beachy PA: Effects of oncogenic mutations in smoothened and patched can be reversed by cyclopamine. Nature 406: 1005–1009, 2000Google Scholar
  57. 57.
    Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN, Chen JK, Cooper MK, Taipale J, Olson JM, Beachy PA: Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297: 1559–1561, 2002Google Scholar
  58. 58.
    Chenn A, Walsh CA: Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297: 365–369, 2002Google Scholar
  59. 59.
    Zurawel RH, Chiappa SA, Allen C, Raffel C: Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Res 58: 896–899, 1998Google Scholar
  60. 60.
    Eberhart CG, Tihan T, Burger PC: Nuclear localization and mutation of b-catenin in medulloblastomas. J Neuropath Exp Neurol 59: 333–337, 2000Google Scholar
  61. 61.
    Koch A, Waha A, Tonn JC, Sorensen N, Berthold F, Wolter M, Reifenberger J, Hartmann W, Friedl W, Reifenberger G, Wiestler OD, Pietsch T: Somatic mutations of WNT/wingless signaling pathway components in primitive neuroectodermal tumors. Int J Cancer 93: 445–449, 2001Google Scholar
  62. 62.
    Dahmen RP, Koch A, Denkhaus D, Tonn JC, Sorensen N, Berthold F, Behrens J, Birchmeier W, Wiestler OD, Pietsch T: Deletions of AXIN1, a component of the WNT/ wingless pathway, in sporadic medulloblastomas. Cancer Res 61: 7039–7043, 2001Google Scholar
  63. 63.
    Huang H, Mahler-Araujo BM, Sankila A, Chimelli L, Yonekawa Y, Kleihues P, Ohgaki H: APC mutations in sporadic medulloblastomas. Am J Pathol 156: 433–437, 2000Google Scholar
  64. 64.
    Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, Krush AJ, Berk T, Cohen Z, Tetu B et al.: The molecular basis of Turcot's syndrome. N Engl J Med 332: 839–847, 1995Google Scholar
  65. 65.
    Van Meir EG: 'Turcot's syndrome': phenotype of brain tumors, survival and mode of inheritance [letter]. Int J Cancer 75: 162–164, 1998Google Scholar
  66. 66.
    Mori T, Nagase H, Horii A, Miyoshi Y, Shimano T, Nakatsuru S, Aoki T, Arakawa H, Yanagisawa A, Ushio Y et al.: Germ-line and somatic mutations of the APC gene in patients with Turcot syndrome and analysis of APC mutations in brain tumors. Genes Chromosomes Cancer 9: 168–172, 1994Google Scholar
  67. 67.
    Russo C, Pellarin M, Tingby O, Bollen AW, Lamborn KR, Mohapatra G, Collins VP, Feuerstein BG: Comparative genomic hybridization in patients with supratentorial and infratentorial primitive neuroectodermal tumors. Cancer 86: 331–339, 1999Google Scholar
  68. 68.
    Rickert CH, Simon R, Bergmann M, Dockhorn-Dworniczak B, Paulus W: Comparative genomic hybridization in pineal parenchymal tumors. Genes Chromosomes Cancer 30: 99–104, 2001Google Scholar
  69. 69.
    Sreekantaiah C, Jockin H, Brecher ML, Sandberg AA: Interstitial deletion of chromosome 11q in a pineoblastoma. Cancer Genet Cytogenet 39: 125–131, 1989Google Scholar
  70. 70.
    Kees UR, Biegel JA, Ford J, Ranford PR, Peroni SE, Hallam LA, Parmiter AH, Willoughby ML, Spagnolo D: Enhanced MYCN expression and isochromosome 17q in pineoblastoma cell lines. Genes Chromosomes Cancer 9: 129–135, 1994Google Scholar
  71. 71.
    Kees UR, Spagnolo D, Hallam LA, Ford J, Ranford PR, Baker DL, Callen DF, Biegel JA: A new pineoblastoma cell line, PER-480, with der(10)t(10;17), der(16)t(l;16), and enhanced MYC expression in the absence of gene amplification. Cancer Genet Cytogenet 100: 159–164, 1998Google Scholar
  72. 72.
    Mena H, Nakazato Y, Jouvet A, Scheithauer BW: Pineoblastoma. In: Kleihues P, Cavenee WK (eds) WHO Classification of Tumours: Tumours of the Nervous System. IARC Press, Lyon, 2000, pp 116–118Google Scholar
  73. 73.
    Warr T, Ward S, Burrows J, Harding B, Wilkins P, Harkness W, Hayward R, Darling J, Thomas D: Identification of extensive genomic loss and gain by comparative genomic hybridisation in malignant astrocytoma in children and young adults. Genes Chromosomes Cancer 31: 15–22, 2001Google Scholar
  74. 74.
    Rickert CH, Strater R, Kaatsch P, Wassmann H, Jurgens H, Dockhorn-Dworniczak B, Paulus W: Pediatric highgrade astrocytomas show chromosomal imbalances distinct from adult cases. Am J Pathol 158: 1525–1532, 2001Google Scholar
  75. 75.
    Alonso M, Hamelin R, Kim M, Porwancher K, Sung T, Parhar P, Miller DC, Newcomb EW: Microsatellite instability occurs in distinct subtypes of pediatric but not adult central nervous system tumors. Cancer Res 61: 2124–2128, 2001Google Scholar
  76. 76.
    Gryfe R, Kim H, Hsieh ET, Aronson MD, Holowaty EJ, Bull SB, Redston M, Gallinger S: Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 342: 69–77, 2000Google Scholar
  77. 77.
    Raffel C, Frederick L, O'Fallon JR, Atherton-Skaff P, Perry A, Jenkins RB, James CD: Analysis of oncogene and tumor suppressor gene alterations in pediatric malignant astrocytomas reveals reduced survival for patients with PTEN mutations. Clin Cancer Res 5: 4085–4090, 1999Google Scholar
  78. 78.
    Sung T, Miller DC, Hayes RL, Alonso M, Yee H, Newcomb EW: Preferential inactivation of the p53 tumor suppressor pathway and lack of EGFR amplification distinguish de novo high grade pediatric astrocytomas from de novo adult astrocytomas. Brain Pathol 10: 249–259, 2000Google Scholar
  79. 79.
    Cheng Y, Ng HK, Zhang SF, Ding M, Pang JC, Zheng J, Poon WS: Genetic alterations in pediatric high-grade astrocytomas. Hum Pathol 30: 1284–1290, 1999Google Scholar
  80. 80.
    Bredel M, Pollack IF, Hamilton RL, James CD: Epidermal growth factor receptor expression and gene amplification in high-grade non-brainstem gliomas of childhood. Clin Cancer Res 5: 1786–1792, 1999Google Scholar
  81. 81.
    Pollack IF, Hamilton RL, Finkelstein SD, Campbell JW, Martinez AJ, Sherwin RN, Bozik ME, Gollin SM: The relationship between TP53 mutations and overexpression of p53 and prognosis in malignant gliomas of childhood. Cancer Res 57: 304–309, 1997Google Scholar
  82. 82.
    Louis DN, Rubio MP, Correa KM, Gusella JF, von Deimling A: Molecular genetics of pediatric brain stem gliomas. Application of PCR techniques to small and archival brain tumor specimens. J Neuropathol Exp Neurol 52: 507–515, 1993Google Scholar
  83. 83.
    Newcomb EW, Alonso M, Sung T, Miller DC: Incidence of p14ARF gene deletion in high-grade adult and pediatric astrocytomas. Hum Pathol 31: 115–119, 2000Google Scholar
  84. 84.
    Sure U, Ruedi D, Tachibana O, Yonekawa Y, Ohgaki H, Kleihues P, Hegi ME: Determination of p53 mutations, EGFR overexpression, and loss of p16 expression in pediatric glioblastomas. J Neuropathol Exp Neurol 56: 782–789, 1997Google Scholar
  85. 85.
    Pollack IF, Finkelstein SD, Burnham J, Holmes EJ, Hamilton RL, Yates AJ, Finlay JL, Sposto R: Age and TP53 mutation frequency in childhood malignant gliomas: results in a multi-institutional cohort. Cancer Res 61: 7404–7407, 2001Google Scholar
  86. 86.
    Platten M, Giordano MJ, Dirven CM, Gutmann DH, Louis DN: Up-regulation of specific NF 1 gene transcripts in sporadic pilocytic astrocytomas. Am J Pathol 149: 621–627, 1996Google Scholar
  87. 87.
    Wimmer K, Eckart M, Meyer-Puttlitz B, Fonatsch C, Pietsch T: Mutational and expression analysis of the NF1 gene argues against a role as tumor suppressor in sporadic pilocytic astrocytomas. J Neuropathol Exp Neurol 61: 896–902, 2002Google Scholar
  88. 88.
    Gutmann DH, Donahoe J, Brown T, James CD, Perry A: Loss of neurofibromatosis 1 (NF1) gene expression in NF1-associated pilocytic astrocytomas. Neuropathol Appl Neurobiol 26: 361–367, 2000Google Scholar
  89. 89.
    Zattara-Cannoni H, Gambarelli D, Lena G, Dufour H, Choux M, Grisoli F, Vagner-Capodano AM: Are juvenile pilocytic astrocytomas benign tumors? A cytogenetic study in 24 cases. Cancer Genet Cytogenet 104: 157–160, 1998Google Scholar
  90. 90.
    Sanoudou D, Tingby O, Ferguson-Smith MA, Collins VP, Coleman N: Analysis of pilocytic astrocytoma by comparative genomic hybridization. Br J Cancer 82: 1218–1222, 2000Google Scholar
  91. 91.
    White FV, Anthony DC, Yunis EJ, Tarbell NJ, Scott RM, Schofield DE: Nonrandom chromosomal gains in pilocytic astrocytomas of childhood. Hum Pathol 26: 979–986, 1995Google Scholar
  92. 92.
    Cheng Y, Pang JC, Ng HK, Ding M, Zhang SF, Zheng J, Liu DG, Poon WS: Pilocytic astrocytomas do not show most of the genetic changes commonly seen in diffuse astrocytomas. Histopathology 37: 437–444, 2000Google Scholar
  93. 93.
    Willert JR, Daneshvar L, Sheffield VC, Cogen PH: Deletion of chromosome arm 17p DNA sequences in pediatric high-grade and juvenile pilocytic astrocytomas. Genes Chromosomes Cancer 12: 165–172, 1995Google Scholar
  94. 94.
    Ishii N, Sawamura Y, Tada M, Daub DM, Janzer RC, Meagher-Villemure M, de Tribolet N, Van Meir EG: Absence of p53 gene mutations in a tumor panel representative of pilocytic astrocytoma diversity using a p53 functional assay. Int J Cancer 76: 797–800, 1998Google Scholar
  95. 95.
    Hayes VM, Dirven CM, Dam A, Verlind E, Molenaar WM, Mooij JJ, Hofstra RM, Buys CH: High frequency of TP53 mutations in juvenile pilocytic astrocytomas indicates role of TP53 in the development of these tumors. Brain Pathol 9: 463–467, 1999Google Scholar
  96. 96.
    Duerr EM, Rollbrocker B, Hayashi Y, Peters N, Meyer-Puttlitz B, Louis DN, Schramm J, Wiestler OD, Parsons R, Eng C, von Deimling A: PTEN mutations in gliomas and glioneuronal tumors. Oncogene 16: 2259–2264, 1998Google Scholar
  97. 97.
    Figarella-Branger D, Daniel L, Andre P, Guia S, Renaud W, Monti G, Vivier E, Rougon G: The PENS epitope identifies an oligodendrocyte precursor cell population and pilocytic astrocytomas. Am J Pathol 155: 1261–1269, 1999Google Scholar
  98. 98.
    Shoshan Y, Nishiyama A, Chang A, Mork S, Barnett GH, Cowell JK, Trapp BD, Staugaitis SM: Expression of oligodendrocyte progenitor cell antigens by gliomas: implications for the histogenesis of brain tumors. Proc Natl Acad Sci USA 96: 10361–10366, 1999Google Scholar
  99. 99.
    Vinchon M, Soto-Ares G, Ruchoux MM, Dhellemmes P: Cerebellar gliomas in children with NF1: pathology and surgery. Childs Nerv Syst 16: 417–420, 2000Google Scholar
  100. 100.
    Meyer P, Eberle MM, Probst A, Tolnay M: Ganglioglioma of optic nerve in neurofibromatosis type 1. Case report and review of the literature. Klin Monatsbl Augenheilkd 217: 55–58, 2000Google Scholar
  101. 101.
    Tamiya T, Hamazaki S, Ono Y, Tokunaga K, Matsumoto K, Furuta T, Ohmoto T: Ganglioglioma in a patient with Turcot syndrome. Case report. J Neurosurg 92: 170–175, 2000Google Scholar
  102. 102.
    Mizuguchi M, Mori M, Nozaki Y, Momoi MY, Itoh M, Takashima S, Hino O: Absence of allelic loss in cytomegalic neurons of cortical tuber in the Eker rat model of tuberous sclerosis. Acta Neuropathol (Berl) 107: 47–52, 2004Google Scholar
  103. 103.
    Jay V, Squire J, Becker LE, Humphreys R: Malignant transformation in a ganglioglioma with anaplastic neuronal and astrocytic components. Report of a case with flow cytometric and cytogenetic analysis. Cancer 73: 2862–2868, 1994Google Scholar
  104. 104.
    Jay V, Squire J, Blaser S, Hoffman HJ, Hwang P: Intracranial and spinal metastases from a ganglioglioma with unusual cytogenetic abnormalities in a patient with complex partial seizures. Childs Nerv Syst 13: 550–555, 1997Google Scholar
  105. 105.
    Debiec-Rychter M, Liberski PP, Alwasiak J, Klimek A: Chromosomal alterations in a case of ganglioglioma. Cancer Genet Cytogenet 85: 155–156, 1995Google Scholar
  106. 106.
    Zhu JJ, Leon SP, Folkerth RD, Guo SZ, Wu JK, Black PM: Evidence for clonal origin of neoplastic neuronal and glial cells in gangliogliomas. Am J Pathol 151: 565–571, 1997Google Scholar
  107. 107.
    Jaffey PB, Mundt AJ, Baunoch DA, Armstrong DL, Hamilton WJ, Zagaja VG, Grossman RG, Wollmann RL: The clinical significance of extracellular matrix in gangliogliomas. J Neuropathol Exp Neurol 55: 1246–1252, 1996Google Scholar
  108. 108.
    Hayashi Y, Iwato M, Hasegawa M, Tachibana O, von Deimling A, Yamashita J: Malignant transformation of a gangliocytoma/ganglioglioma into a glioblastoma multiforme: a molecular genetic analysis. Case report. J Neurosurg 95: 138–142, 2001Google Scholar
  109. 109.
    Platten M, Meyer-Puttlitz B, Blumcke I, Waha A, Wolf HK, Nothen MM, Louis DN, Sampson JR, von Deimling A: A novel splice site associated polymorphism in the tuberous sclerosis 2 (TSC2) gene may predispose to the development of sporadic gangliogliomas. J Neuropathol Exp Neurol 56: 806–810, 1997Google Scholar
  110. 110.
    Becker AJ, Lobach M, Klein H, Normann S, Nothen MM, von Deimling A, Mizuguchi M, Elger CE, Schramm J, Wiestler OD, Blumcke I: Mutational analysis of TSC1 and TSC2 genes in gangliogliomas. Neuropathol Appl Neurobiol 27: 105–114, 2001Google Scholar
  111. 111.
    Wiestler OD, Schiffer D, Coons SW, Prayson RA, Rosenblum MK: Ependymoma. In: Kleihues P, Cavenee WK (eds) WHO Classification of Tumors: Tumors of the Nervous System. IARC Press, Lyon, 2000, pp 72–76Google Scholar
  112. 112.
    Heideman RL, Packer RJ, Albright LA, Freeman CR, Rorke LB: Tumors of the central nervous system. In: Pizzo PA, Poplack DG (eds) Principles and Practise of Pediatric Oncology. Lippincott-Raven, Philadelphia, 1997, pp 633–698Google Scholar
  113. 113.
    Hamilton RL, Pollack IF: The molecular biology of ependymomas. Brain Pathol 7: 807–822, 1997Google Scholar
  114. 114.
    Ebert C, von Haken M, Meyer-Puttlitz B, Wiestler OD, Reifenberger G, Pietsch T, von Deimling A: Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am J Pathol 155: 627–632, 1999Google Scholar
  115. 115.
    Kraus JA, de Millas W, Sorensen N, Herbold C, Schichor C, Tonn JC, Wiestler OD, von Deimling A, Pietsch T: Indications for a tumor suppressor gene at 22q l 1 involved in the pathogenesis of ependymal tumors and distinct from hSNF5/INI1. Acta Neuropathol (Berl) 102: 69–74, 2001Google Scholar
  116. 116.
    Kramer DL, Parmiter AH, Rorke LB, Sutton LN, Biegel JA: Molecular cytogenetic studies of pediatric ependymomas. J Neurooncol 37: 25–33, 1998Google Scholar
  117. 117.
    Stratton MR, Darling J, Lantos PL, Cooper CS, Reeves BR: Cytogenetic abnormalities in human ependymomas. Int J Cancer 44: 579–581, 1989Google Scholar
  118. 118.
    von Haken MS, White EC, Daneshvar-Shyesther L, Sih S, Choi E, Kalra R, Cogen PH: Molecular genetic analysis of chromosome arm 17p and chromosome arm 22q DNA sequences in sporadic pediatric ependymomas. Genes Chromosomes Cancer 17: 37–44, 1996Google Scholar
  119. 119.
    Dyer S, Prebble E, Davison V, Davies P, Ramani P, Ellison D, Grundy R: Genomic imbalances in pediatric intracranial ependymomas define clinically relevant groups. Am J Pathol 161: 2133–2141, 2002Google Scholar
  120. 120.
    Hirose Y, Aldape K, Bollen A, James CD, Brat D, Lamborn K, Berger M, Feuerstein BG: Chromosomal abnormalities subdivide ependymal tumors into clinically relevant groups. Am J Pathol 158: 1137–1143, 2001Google Scholar
  121. 121.
    Lednicky JA, Garcea RL, Bergsagel DJ, Butel JS: Natural simian virus 40 strains are present in human choroid plexus and ependymoma tumors. Virology 212: 710–717, 1995Google Scholar
  122. 122.
    Bergsagel DJ, Finegold MJ, Butel JS, Kupsky WJ, Garcea RL: DNA sequences similar to those of simian virus 40 in ependymomas and choroid plexus tumors of childhood. N Engl J Med 326: 988–993, 1992Google Scholar
  123. 123.
    Carbone M, Bocchetta M, Cristaudo A, Emri S, Gazdar A, Jasani B, Lednicky J, Miele L, Mutti L, Pass HI, Ramael M, Rizzo P, Testa JR, Weggen S, Yeung A: SV40 and human brain tumors. Int J Cancer 106: 140–142; author reply 143–145, 2003Google Scholar
  124. 124.
    Ohgaki H, Huang H, Haltia M, Vainio H, Kleihues P: More about: cell and molecular biology of simian virus 40: implications for human infections and disease. J Natl Cancer Inst 92: 495–497, 2000Google Scholar
  125. 125.
    Carbone M, Rizzo P, Pass HI: Simian virus 40, poliovaccines and human tumors: a review of recent developments. Oncogene 15: 1877–1888, 1997Google Scholar
  126. 126.
    Zwetsloot CP, Kros JM, Paz y Gueze HD: Familial occurrence of tumours of the choroid plexus. J Med Genet 28: 492–494, 1991Google Scholar
  127. 127.
    Sevenet N, Sheridan E, Amram D, Schneider P, Handgretinger R, Delattre O: Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet 65: 1342–1348, 1999Google Scholar
  128. 128.
    Taylor MD, Gokgoz N, Andrulis IL, Mainprize TG, Drake JM, Rutka JT: Familial posterior fossa brain tumors of infancy secondary to germline mutation of the hSNF5 gene. Am J Hum Genet 66: 1403–1406, 2000Google Scholar
  129. 129.
    Vital A, Bringuier PP, Huang H, San Galli F, Rivel J, Ansoborlo S, Cazauran JM, Taillandier L, Kleihues P, Ohgaki H: Astrocytomas and choroid plexus tumors in two families with identical p53 germline mutations. J Neuropathol Exp Neurol 57: 1061–1069, 1998Google Scholar
  130. 130.
    Taggard DA, Menezes AH: Three choroid plexus papillomas in a patient with Aicardi syndrome. A case report. Pediatr Neurosurg 33: 219–223, 2000Google Scholar
  131. 131.
    Hamano K, Matsubara T, Shibata S, Hirano C, Ito Z, Ase Y, Kusakari J, Takita H: Aicardi syndrome accompanied by auditory disturbance and multiple brain tumors. Brain Dev 13: 438–441, 1991Google Scholar
  132. 132.
    Uchiyama CM, Carey CM, Cherny WB, Brockmeyer DL, Falkner LD, Walker ML, Boyer RS: Choroid plexus papilloma and cysts in the Aicardi syndrome: case reports. Pediatr Neurosurg 27: 100–104, 1997Google Scholar
  133. 133.
    Donnenfeld AE, Graham JM Jr, Packer RJ, Aquino R, Berg SZ, Emanuel BS: Microphthalmia and chorioretinal lesions in a girl with an Xp22.2-pter deletion and partial 3p trisomy: clinical observations relevant to Aicardi syndrome gene localization. Am J Med Genet 37: 182–186, 1990Google Scholar
  134. 134.
    Steichen-Gersdorf E, Trawoger R, Duba HC, Mayr U, Felber S, Utermann G: Hypomelanosis of Ito in a girl with plexus papilloma and translocation (X;17). Hum Genet 90: 611–613, 1993Google Scholar
  135. 135.
    Zajac V, Kirchhoff T, Levy ER, Horsley SW, Miller A, Steichen-Gersdorf E, Monaco AP: Characterisation of X;17(q12;p13) translocation breakpoints in a female patient with hypomelanosis of Ito and choroid plexus papilloma. Eur J Hum Genet 5: 61–68, 1997Google Scholar
  136. 136.
    Norman MG, Harrison KJ, Poskitt KJ, Kalousek DK: Duplication of 9P and hyperplasia of the choroid plexus: a pathologic, radiologic, and molecular cytogenetics study. Pediatr Pathol Lab Med 15: 109–120, 1995Google Scholar
  137. 137.
    Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T, Van Dyke T: p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78: 703–711, 1994Google Scholar
  138. 138.
    Saenz Robles MT, Symonds H, Chen J, Van Dyke T: Induction versus progression of brain tumor development: differential functions for the pRB-and p53-targeting domains of simian virus 40 T antigen. Mol Cell Biol 14: 2686–2698, 1994Google Scholar
  139. 139.
    Carlotti CG Jr, Salhia B, Weitzman S, Greenberg M, Dirks PB, Mason W, Becker LE, Rutka JT: Evaluation of proliferative index and cell cycle protein expression in choroid plexus tumors in children. Acta Neuropathol (Berl) 103: 1–10, 2002Google Scholar
  140. 140.
    Rorke LB, Packer R, Biegel J: Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood. J Neurooncol 24: 21–28, 1995Google Scholar
  141. 141.
    Rorke LB, Packer RJ, Biegel JA: Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood: definition of an entity. J Neurosurg 85: 56–65, 1996Google Scholar
  142. 142.
    Burger PC, Yu IT, Tihan T, Friedman HS, Strother DR, Kepner JL, Duffner PK, Kun LE, Perlman EJ: Atypical teratoid/rhabdoid tumor of the central nervous system: a highly malignant tumor of infancy and childhood frequently mistaken for medulloblastoma: a Pediatric Oncology Group study. Am J Surg Pathol 22: 1083–1092, 1998Google Scholar
  143. 143.
    Biegel JA, Rorke LB, Emanuel BS: Monosomy 22 in rhabdoid or atypical teratoid tumors of the brain [letter]. N Engl J Med 321: 906, 1989Google Scholar
  144. 144.
    Biegel JA, Rorke LB, Packer RJ, Emanuel BS: Monosomy 22 in rhabdoid or atypical tumors of the brain. J Neurosurg 73: 710–714, 1990Google Scholar
  145. 145.
    Biegel JA, Burk CD, Parmiter AH, Emanuel BS: Molecular analysis of a partial deletion of 22q in a central nervous system rhabdoid tumor. Genes Chromosomes Cancer 5: 104–108, 1992Google Scholar
  146. 146.
    Biegel JA, Alien CS, Kawasaki K, Shimizu N, Budarf ML, Bell CJ: Narrowing the critical region for a rhabdoid tumor locus in 22q11. Genes Chromosomes Cancer 16: 94–105, 1996Google Scholar
  147. 147.
    Hirose M, Yamada T, Toyosaka A, Hirose T, Kagami S, Abe T, Kuroda Y: Rhabdoid tumor of the kidney: a report of two cases with respective tumor markers and a specific chromosomal abnormality, del(11p13). Med Pediatr Oncol 27: 174–178, 1996Google Scholar
  148. 148.
    Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R, Aurias A, Delattre O: Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394: 203–206, 1998Google Scholar
  149. 149.
    Sevenet N, Lellouch-Tubiana A, Schofield D, Hoang-Xuan K, Gessler M, Birnbaum D, Jeanpierre C, Jouvet A, Delattre O: Spectrum of hSNF5/INI1 somatic mutations in human cancer and genotype–phenotype correlations. Hum Mol Genet 8: 2359–2368, 1999Google Scholar
  150. 150.
    Gessi M, Giangaspero F, Pietsch T: Atypical teratoid/ rhabdoid tumors and choroid plexus tumors: when genetics ‘surprise’ pathology. Brain Pathol 13: 409–414, 2003Google Scholar
  151. 151.
    Roberts CW, Galusha SA, McMenamin ME, Fletcher CD, Orkin SH: Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci USA 97: 13796–13800, 2000Google Scholar
  152. 152.
    Guidi CJ, Sands AT, Zambrowicz BP, Turner TK, Demers DA, Webster W, Smith TW, Imbalzano AN, Jones SN: Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol Cell Biol 21: 3598–3603, 2001Google Scholar
  153. 153.
    Muchardt C, Yaniv M: When the SWI/SNF complex remodels ... the cell cycle. Oncogene 20: 3067–3075, 2001Google Scholar
  154. 154.
    Cheng SW, Davies KP, Yung E, Beltran RJ, Yu J, Kalpana GV: c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. Nat Genet 22: 102–105, 1999Google Scholar
  155. 155.
    Fisher PG, Burger PC, Eberhart CG: Biologic risk stratification of medulloblastoma: the real time is now. J Clin Oncol 22: 971–974, 2004Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Torsten Pietsch
    • 1
  • Michael D. Taylor
    • 2
  • James T. Rutka
    • 2
  1. 1.Department of NeuropathologyUniversity of Bonn Medical CenterBonnGermany
  2. 2.Division of NeurosurgeryHospital for Sick ChildrenTorontoCanada

Personalised recommendations