Journal of Neuro-Oncology

, Volume 71, Issue 3, pp 223–229 | Cite as

PAX6 suppresses growth of human glioblastoma cells

  • Yi-Hong Zhou
  • Xiaosong Wu
  • Fang Tan
  • Yue-Xi Shi
  • Tricia Glass
  • T. J. Liu
  • Kyle Wathen
  • Kenneth R. Hess
  • Joy Gumin
  • Frederick Lang
  • W. K. Alfred Yung
Laboratory Investigation

Abstract

Purpose: Glioblastomas (GBMs) are the most common primary malignant brain tumors. Majority of GBMs has loss of heterozygosity of chromosome 10. The PAX6 encodes a transcription factor that involves in development of the brain, where its expression persists. We have reported that the expression of PAX6 was significantly reduced in GBMs and that a low level of PAX6 expression is a harbinger of an unfavorable prognosis for patients with malignant astrocytic glioma. Interestingly, PAX6 expression was increased in suppressed somatic cell hybrids derived from introducing a normal human chromosome 10 into U251 GBM cells. Thus it is interesting to determine if repression of PAX6 expression is involved in anti-tumor suppression function in GBM.

Experimental design: We overexpressed PAX6 in a GBM cell line U251HF via either stable transfection or infection with recombinant adenovirus, and examined cell growth in vitro and in vivo.

Result: Although we did not observe changes in the cell doubling time for PAX6-stable transfectants, significantly fewer numbers of PAX6-positive colonies grew in soft agar. Transient overexpression of PAX6 via adenovirus, however, suppressed cell growth by increasing the number of cells in G1 and by decreasing the number of cells in S-phase, and later on caused a dramatic level of cell death. Repeated subcutaneous and intracranial implantation experiments in nude mice using PAX6-stable transfectants provided solid evidence that PAX6 suppressed tumor growth in vivo and significantly extended mouse survival.

Conclusion: Our data demonstrate that PAX6exerts a tumor suppressor function that limits the growth of GBM cells.

Keywords

cell growth glioblastoma PAX6 suppression tumorigenicity 

Abbreviations

AA

anaplastic astrocytoma

GBM

glioblastoma multiforme

P.I

propidium iodide

QRT-PCR

quantitative reverse transcriptase-polymerase chain reaction

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rasheed, BK, Wiltshire, RN, Bigner, SH,  et al. 1999Molecular pathogenesis of malignant gliomasCurr Opin Oncol11162167Google Scholar
  2. CBTRUS: Statistical Report: Primary Brain Tumors in the United States, 1992–1997. The Central Brain Tumor Registry of the United States, Chicago, 2000 Google Scholar
  3. Rasheed, BK, Fuller, GN, Friedman, AH,  et al. 1992Loss of heterozygosity for 10q loci in human gliomasGenes Chromosomes Canc57582Google Scholar
  4. Deimling, A, Ammon, K, Schoenfeld, D,  et al. 1993Subsets of glioblastoma multiforme defined by molecular genetic analysisBrain Pathol31926PubMedGoogle Scholar
  5. Ransom, DT, Ritland, SR, Moertel, CA,  et al. 1992Correlation of cytogenetic analysis and loss of heterozygosity studies in human diffuse astrocytomas and mixed oligo-astrocytomasGenes Chromosomes Cancer5357374Google Scholar
  6. Kon, H, Sonoda, Y, Kumabe, T,  et al. 1998Structural and functional evidence for the presence of tumor suppressor genes on the short arm of chromosome 10 in human gliomasOncogene16257263Google Scholar
  7. Wiltshire, RN, Rasheed, BK, Friedman, HS,  et al. 2000Comparative genetic patterns of glioblastoma multiforme: potential diagnostic tool for tumor classificationNeuro-oncology2164173Google Scholar
  8. Liu, W, James, CD, Frederick, L,  et al. 1997PTEN/MMAC1 mutations and EGFR amplification in glioblastomasCancer Res5752545257Google Scholar
  9. Louis, DN 1997A molecular genetic model of astrocytoma histopathologyBrain Pathol7755764PubMedGoogle Scholar
  10. Nozaki, M, Tada, M, Kobayashi, H,  et al. 1999Roles of the functional loss of p53 and other genes in astrocytoma tumorigenesis and progressionNeuro-oncology1124137Google Scholar
  11. Simpson, TI, Price, DJ 2002Pax6; a pleiotropic player in developmentBioessays2410411051Google Scholar
  12. CC, Ton, Hirvonen, H, Miwa, H,  et al. 1991Positional cloning and characterization of a paired box- and homeobox-containing gene from the aniridia regionCell6710591074CrossRefPubMedGoogle Scholar
  13. Prosser, J, Heyningen, V 1998PAX6 mutations reviewedHum Mutat1193108Google Scholar
  14. Sisodiya, SM, Free, SL, Williamson, KA,  et al. 2001PAX6 haploinsufficiency causes cerebral malformation and olfactory dysfunction in humansNat Genet28214216Google Scholar
  15. Stoykova, A, Gruss, P 1994Roles of Pax-genes in developing and adult brain as suggested by expression patternsJ Neurosci1413951412Google Scholar
  16. Gotz, M, Stoykova, A, Gruss, P 1998Pax6 controls radial glia differentiation in the cerebral cortexNeuron2110311044Google Scholar
  17. Sun, T, Pringle, NP, Hardy, AP,  et al. 1998Pax6 influences the time and site of origin of glial precursors in the ventral neural tubeMol Cell Neurosci12228239Google Scholar
  18. Mansouri, A, Hallonet, M, Gruss, P 1996Pax genes and their roles in cell differentiation and developmentCurr Opin Cell Biol8851857Google Scholar
  19. Sander, M, Neubuser, A, Kalamaras, J,  et al. 1997Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet developmentGenes Dev1116621673Google Scholar
  20. Zhou, YH, Tan, F, Hess, KR,  et al. 2003The expression of PAX6, PTEN, vascular endothelial growth factor, and epidermal growth factor receptor in gliomas: relationship to tumor grade and survivalClin Cancer Res933693375Google Scholar
  21. Gorlov, IP, Saunders, GF 2002A method for isolating alternatively spliced isoforms: isolation of murine Pax6 isoformsAnal Biochem308401404Google Scholar
  22. Epstein, JA, Glaser, T, Cai, J,  et al. 1994Two independent and interactive DNA-binding subdomains of the Pax6 paired domain are regulated by alternative splicingGenes Dev820222034Google Scholar
  23. Kozmik, Z, Czerny, T, Busslinger, M 1997Alternatively spliced insertions in the paired domain restrict the DNA sequence specificity of Pax6 and Pax8EMBO J1667936803Google Scholar
  24. Pershouse, MA, Stubblefield, E, Hadi, A,  et al. 1993Analysis of the functional role of chromosome 10 loss in human glioblastomasCancer Res5350435050Google Scholar
  25. Steck, PA, Ligon, AH, Cheong, P,  et al. 1995Two tumor suppressive loci on chromosome 10 involved in human glioblastomasGenes Chromosomes Cancer12255261Google Scholar
  26. Ke, LD, Shi, YX, Im, SA,  et al. 2000The relevance of cell proliferation, vascular endothelial growth factor, and basic fibroblast growth factor production to angiogenesis and tumorigenicity in human glioma cell linesClin Cancer Res625622572Google Scholar
  27. Zhou, Y, Zheng, JB, Gu, X,  et al. 2000A novel Pax-6 binding site in rodent B1 repetitive elements: coevolution between developmental regulation and repeated elementsGene245319328Google Scholar
  28. Tang, HK, Chao, LY, Saunders, GF 1997Functional analysis of paired box missense mutations in the PAX6 geneHum Mol Genet6381386Google Scholar
  29. Lal, S, Lacroix, M, Tofilon, P,  et al. 2000An implantable guide-screw system for brain tumor studies in small animalsJ Neurosurg92326333Google Scholar
  30. Tang, HK, Singh, S, Saunders, GF 1998Dissection of the transactivation function of the transcription factor encoded by the eye developmental gene PAX6J Biol Chem27372107221Google Scholar
  31. Heins, N, Malatesta, P, Cecconi, F,  et al. 2002Glial cells generate neurons: the role of the transcription factor Pax6Nat Neurosci5308315Google Scholar
  32. Estivill-Torrus, G, Pearson, H, Heyningen , V,  et al. 2002Pax6 is required to regulate the cell cycle and the rate of progression from symmetrical to asymmetrical division in mammalian cortical progenitorsDevelopment129455466Google Scholar
  33. Steck, PA, Lin, H, Langford, LA,  et al. 1999Functional and molecular analyses of 10q deletions in human gliomasGenes Chromosomes Cancer24135143Google Scholar
  34. Fujimoto, M, Fults, DW, Thomas, GA,  et al. 1989Loss of heterozygosity on chromosome 10 in human glioblastoma multiformeGenomics4210214PubMedGoogle Scholar
  35. Karlbom, AE, James, CD, Boethius, J,  et al. 1993Loss of heterozygosity in malignant gliomas involves at least three distinct regions on chromosome 10Hum Genet92169174Google Scholar
  36. Albarosa, R, Colombo, BM, Roz, L,  et al. 1996Deletion mapping of gliomas suggest the presence of two small regions for candidate tumor-suppressor genes in a 17-cM interval on chromosome 10qAm J Hum Genet5812601267Google Scholar
  37. Ichimura, K, Schmidt, EE, Miyakawa, A,  et al. 1998Distinct patterns of deletion on 10p and 10q suggest involvement of multiple tumor suppressor genes in the development of astrocytic gliomas of different malignancy gradesGenes Chromosomes Cancer22915Google Scholar
  38. Steck, PA, Pershouse, MA, Jasser, SA,  et al. 1997Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancersNat Genet15356362CrossRefPubMedGoogle Scholar
  39. Li, DM, Sun, H 1998PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cellsProc Natl Acad Sci USA951540615411Google Scholar
  40. Li, J, Yen, C, Liaw, D,  et al. 1997PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancerScience27519431947Google Scholar
  41. Ishii, N, Maier, D, Merlo, A,  et al. 1999Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell linesBrain Pathol9469479Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Yi-Hong Zhou
    • 1
  • Xiaosong Wu
    • 1
  • Fang Tan
    • 2
  • Yue-Xi Shi
    • 2
  • Tricia Glass
    • 2
  • T. J. Liu
    • 2
  • Kyle Wathen
    • 3
  • Kenneth R. Hess
    • 3
  • Joy Gumin
    • 4
  • Frederick Lang
    • 4
  • W. K. Alfred Yung
    • 2
  1. 1.Department of Neurobiology and Developmental Sciences, Arkansas Cancer Research CenterUniversity of Arkansas for Medical SciencesLittle RockUSA
  2. 2.Department of Neuro-Oncology, Anderson Cancer CenterUniversity of Texas M.D.HoustonUSA
  3. 3.Department of Biostatistics, Anderson Cancer CenterUniversity of Texas M.D.HoustonUSA
  4. 4.Department of Neurosurgery, Anderson Cancer CenterUniversity of Texas M.D.HoustonUSA

Personalised recommendations