Advertisement

New Forests

pp 1–22 | Cite as

Nutrient dynamics in an Andean forest region: a case study of exotic and native species plantations in southern Ecuador

  • Pablo QuichimboEmail author
  • Leticia Jiménez
  • Darío Veintimilla
  • Karin Potthast
  • Alexander Tischer
  • Sven Günter
  • Reinhard Mosandl
  • Ute Hamer
Article

Abstract

Information about nutrient dynamics is of upmost importance in order to contribute to the restoration of degraded forest environments in the Andes of southern Ecuador. This study aims to investigate the differences of nutrient dynamics between a native alder (Alnus acuminata) and an exotic pine (Pinus patula) tree species in this region. Based on litterfall, forest floor and mineral topsoil (0–20 cm) of two pine and two alder plantations, we studied the litterfall production and its seasonality; temporal variations of nutrient concentrations, stoichiometric ratios and potential nutrient return (PNR) of leaf-litterfall; mean residence times (MRT) of nutrients in the forest floor; and assessed soil biogeochemical properties. Our results showed that total litterfall production in pine was twice as high as in alder. Litterfall biomass seasonality was similar for both species and highly associated to periods with less precipitation. Pine exhibited the highest seasonality of nutrient concentrations and stoichiometric ratios. PNR of N, K, Ca, and Mn exhibited the major differences between the species. The annual PNR of N and Ca were higher in alder, while those of K and Mn were higher in pine. Pine exhibited higher MRT values for C, N, P, S, Cu, and Zn, while alder showed the higher for Mg, K, Mn, and Ca. In soils, alder exhibited higher concentrations and stocks of nutrients, but not for C. Although, the soil microbial biomass was similar under both species, microbial activity was different. C and net N mineralization were higher in alder, and nitrification dominated over ammonification processes. In general, our findings show a faster cycling of nutrients in alder than in pine.

Keywords

Andean alder Litterfall seasonality Mean residence time Potential nutrient return Soil microbial activity Soil microbial biomass 

Notes

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (Project DFG RU 816/2-T1, HA 4597/4-1) for financial support. Partial funding was given by the UTPL, SENESCYT and Universidad de Cuenca.

Supplementary material

11056_2019_9734_MOESM1_ESM.docx (101 kb)
Supplementary material 1 (DOCX 100 kb)

References

  1. Aceñaloza PG, Gallardo-lancho JF (1994) Pérdida de peso seco en hojarasca de Alnus acuminata en la provincia de Tucumán (Argentina). Bosque 15:51–54CrossRefGoogle Scholar
  2. Aguirre N, Günter S, Weber M, Stimm B (2006) Enrichment of Pinus patula plantations with native species in southern Ecuador. Lyionia 10:33–45Google Scholar
  3. Alvarado A (2016) Plant nutrition in tropical forestry. In: Pancel L, Köhl M (eds) Tropical forestry handbook. Springer, Berlin, pp 1113–1202CrossRefGoogle Scholar
  4. Alvarado A, Camacho ME, Fernández-Moya J et al (2015) Interpretación del análisis foliar de varias especies forestales latifoliadas del trópico americano. In: VIII Congreso Nacional de Suelos (Costa Rica). Asociación Costarricense de la Ciencia del Suelo, San José, pp 1–68Google Scholar
  5. Bare MC, Ashton MS (2016) Growth of native tree species planted in montane reforestation projects in the Colombian and Ecuadorian Andes differs among site and species. New For 47:333–355.  https://doi.org/10.1007/s11056-015-9519-z CrossRefGoogle Scholar
  6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  7. Berg B, Laskowski R (2005) Litter decomposition: a guide to carbon and nutrient turnover. Elsevier, AmsterdamGoogle Scholar
  8. Berg B, McClaugherty C (2014) Plant litter: decomposition, humus formation, carbon sequestration, 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  9. Berg B, Johansson MB, Liu C et al (2017) Calcium in decomposing foliar litter—a synthesis for boreal and temperate coniferous forests. For Ecol Manage 403:137–144.  https://doi.org/10.1016/j.foreco.2017.08.022 CrossRefGoogle Scholar
  10. Binkley D, Sollins P, Bell R et al (1992) Biogeochemistry of adjacent conifer and alder–conifer stands. Ecology 73:2022–2033CrossRefGoogle Scholar
  11. Bonnesoeur V, Locatelli B, Guariguata MR et al (2019) Impacts of forests and forestation on hydrological services in the Andes: a systematic review. For Ecol Manage 433:569–584.  https://doi.org/10.1016/j.foreco.2018.11.033 CrossRefGoogle Scholar
  12. Brandbyge J (1991) Reforestación de los Andes ecuatorianos con especies nativas. CESA-Intercooperation Suiza, QuitoGoogle Scholar
  13. Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–46CrossRefGoogle Scholar
  14. Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329.  https://doi.org/10.1016/0038-0717(82)90001-3 CrossRefGoogle Scholar
  15. Buytaert W, Iñiguez V, De Bièvre B (2007) The effects of afforestation and cultivation on water yield in the Andean páramo. For Ecol Manage 251:22–30.  https://doi.org/10.1016/j.foreco.2007.06.035 CrossRefGoogle Scholar
  16. Čapek P, Manzoni S, Kaštovská E et al (2018) A plant–microbe interaction framework explaining nutrient effects on primary production. Nat Ecol Evol 2:1588–1596.  https://doi.org/10.1038/s41559-018-0662-8 CrossRefPubMedGoogle Scholar
  17. Chacón G, Gagnon D, Paré D (2009) Comparison of soil properties of native forests, Pinus patula plantations and adjacent pastures in the Andean highlands of southern Ecuador: land use history or recent vegetation effects? Soil Use Manag 25:427–433.  https://doi.org/10.1111/j.1475-2743.2009.00233.x CrossRefGoogle Scholar
  18. Chave J, Navarrete D, Almeida S et al (2010) Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7:43–55.  https://doi.org/10.5194/bg-7-43-2010 CrossRefGoogle Scholar
  19. Chen GC, He ZL (2004) Determination of soil microbial biomass phosphorus in acid red soils from southern China. Biol Fertil Soils 39:446–451.  https://doi.org/10.1007/s00374-004-0734-6 CrossRefGoogle Scholar
  20. Claessens H, Oosterbaan A, Savill P, Rondeux J (2010) A review of the characteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry 83:163–175.  https://doi.org/10.1093/forestry/cpp038 CrossRefGoogle Scholar
  21. Cronan CS (2018) Ecosystem biogeochemistry: element cycling in the forest landscape. Springer, ChamCrossRefGoogle Scholar
  22. Cuevas E, Lugo AE (1998) Dynamics of organic matter and nutrient return from litterfall in stands of ten tropical tree plantation species. For Ecol Manage 112:263–279.  https://doi.org/10.1016/S0378-1127(98)00410-1 CrossRefGoogle Scholar
  23. Dahik CQ, Crespo P, Stimm B et al (2018) Contrasting stakeholders’ perceptions of pine plantations in the páramo ecosystem of Ecuador. Sustainability 10:1.  https://doi.org/10.3390/su10061707 CrossRefGoogle Scholar
  24. Delzon S, Loustau D (2005) Age-related decline in stand water use: sap flow and transpiration in a pine forest chronosequence. Agric For Meteorol 129:105–119.  https://doi.org/10.1016/j.agrformet.2005.01.002 CrossRefGoogle Scholar
  25. Dunn WW, Morgan P, Lynch AM (1990) Production of alder (Alnus jorullensis) to meet fuelwood demand in the Sierra of Ecuador. Agrofor Syst 10:199–211.  https://doi.org/10.1007/BF00122912 CrossRefGoogle Scholar
  26. Farley KA (2007) Grasslands to tree plantations: forest transition in the Andes of Ecuador. Ann Assoc Am Geogr 97:755–771CrossRefGoogle Scholar
  27. Farley KA, Kelly EF (2004) Effects of afforestation of a páramo grassland on soil nutrient status. For Ecol Manage 195:281–290.  https://doi.org/10.1016/j.foreco.2003.12.015 CrossRefGoogle Scholar
  28. Feng X, Vico G, Porporato A (2012) On the effects of seasonality on soil water balance and plant growth. Water Resour Res 48:1–12.  https://doi.org/10.1029/2011WR011263 CrossRefGoogle Scholar
  29. Günter S, Stimm B, Cabrera M, Diaz ML, Lojan M, Ordoñez E, Richter M, Weber M (2008) Tree phenology in montane forests of southern Ecuador can be explained by precipitation, radiation and photoperiodic control. J Trop Ecol 24(3):247–258CrossRefGoogle Scholar
  30. Günter S, Gonzalez P, Álvarez G et al (2009) Determinants for successful reforestation of abandoned pastures in the Andes: soil conditions and vegetation cover. For Ecol Manage 258:81–91.  https://doi.org/10.1016/j.foreco.2009.03.042 CrossRefGoogle Scholar
  31. Hamer U, Potthast K, Burneo JI, Makeschin F (2013) Nutrient stocks and phosphorus fractions in mountain soils of Southern Ecuador after conversion of forest to pasture. Biogeochemistry 112:495–510.  https://doi.org/10.1007/s10533-012-9742-z CrossRefGoogle Scholar
  32. Hanger BC (1979) The movement of calcium in plants. Commun Soil Sci Plant Anal 10:171–193.  https://doi.org/10.1080/00103627909366887 CrossRefGoogle Scholar
  33. Hobbie SE (2015) Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30:357–363.  https://doi.org/10.1016/j.tree.2015.03.015 CrossRefPubMedGoogle Scholar
  34. Jacobs SR, Timbe E, Weeser B et al (2018) Assessment of hydrological pathways in East African montane catchments under different land use. Hydrol Earth Syst Sci 22:4981–5000.  https://doi.org/10.5194/hess-22-4981-2018 CrossRefGoogle Scholar
  35. Jiménez D, Aguirre N (2017) Generación de indicadores florísticos para el monitoreo de la restauración ecológica en áreas degradadas del bosque siempreverde montano de la cordillera oriental de los andes del sur (BSMN02). Bachelor thesis. Carrera de Ingeniería Forestal, Universidad Nacional de LojaGoogle Scholar
  36. Kattan GH, Murcia C (2012) Ecological patterns and processes in noncommercial, monospecific tree plantations in the tropical Andes. In: Simonetti JA, Grez AA, Estades CF (eds) Biodiversity conservation in agroforestry landscapes: challenges and opportunities. Editorial Universitaria, Santiago, pp 131–144Google Scholar
  37. Killingbeck KT (1993) Inefficient nitrogen resorption in genets of the actinorhizal nitrogen fixing shrub Comptonia peregrina: physiological ineptitude or evolutionary tradeoff? Oecologia 94:542–549.  https://doi.org/10.1007/BF00566970 CrossRefPubMedGoogle Scholar
  38. Kingston HM, Jassie LB (1986) Microwave energy for acid decomposition at elevated temperatures and pressures using biological and botanical samples. Anal Chem 58:2534–2541CrossRefPubMedGoogle Scholar
  39. Knoke T, Bendix J, Pohle P et al (2014) Afforestation or intense pasturing improve the ecological and economic value of abandoned tropical farmlands. Nat Commun 5:5612.  https://doi.org/10.1038/ncomms6612 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Knoke T, Paul C, Hildebrandt P et al (2016) Compositional diversity of rehabilitated tropical lands supports multiple ecosystem services and buffers uncertainties. Nat Commun 7:11877.  https://doi.org/10.1038/ncomms11877 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kumar A, Singh UM, Manohar M, Gaur VS (2015) Calcium transport from source to sink: understanding the mechanism(s) of acquisition, translocation, and accumulation for crop biofortification. Acta Physiol Plant 37:1722CrossRefGoogle Scholar
  42. Lavery JM, Comeau PG, Prescott CE (2004) The influence of red alder patches on light, litterfall, and soil nutrients in adjacent conifer stands. Can J For Res 34:56–64.  https://doi.org/10.1139/x03-194 CrossRefGoogle Scholar
  43. Liu C, Westman CJ, Berg B et al (2004) Variation in litterfall-climate relationships between coniferous and broadleaf forests in Eurasia. Glob Ecol Biogeogr 13:105–114.  https://doi.org/10.1111/j.1466-882X.2004.00072.x CrossRefGoogle Scholar
  44. Löf M, Madsen P, Metslaid M et al (2019) Restoring forests: regeneration and ecosystem function for the future. New For 50:139–151.  https://doi.org/10.1007/s11056-019-09713-0 CrossRefGoogle Scholar
  45. Mejía E, Pacheco P (2013) Aprovechamiento forestal y mercados de la madera en la Amazonía Ecuatoriana. CIFOR, BogorGoogle Scholar
  46. Mellert KH, Göttlein A (2012) Comparison of new foliar nutrient thresholds derived from van den Burg’s literature compilation with established central European references. Eur J For Res 131:1461–1472.  https://doi.org/10.1007/s10342-012-0615-8 CrossRefGoogle Scholar
  47. Middendorp RS, Pérez AJ, Molina A, Lambin EF (2016) The potential to restore native woody plant richness and composition in a reforesting landscape: a modeling approach in the Ecuadorian Andes. Landsc Ecol 31:1581–1599.  https://doi.org/10.1007/s10980-016-0340-7 CrossRefGoogle Scholar
  48. Ministerio del Ambiente de Ecuador (2006) Plan Nacional de Forestación y Reforestación. Subsecretaría de Capital Natural, Dirección Nacional Forestal, Ministerio del Ambiente de Ecuador, QuitoGoogle Scholar
  49. Morales-Hidalgo D, Oswalt SN, Somanathan E (2015) Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. For Ecol Manage 352:68–77.  https://doi.org/10.1016/j.foreco.2015.06.011 CrossRefGoogle Scholar
  50. Mosandl R, Günter S, Stimm B, Weber M (2008) Ecuador suffers the highest deforestation rate in South America. In: Beck E, Bendix J, Kottke I et al (eds) Gradients in a tropical mountain ecosystem of Ecuador SE-4. Springer, Berlin, pp 37–40CrossRefGoogle Scholar
  51. Murcia C (1997) Evaluation of Andean alder as a catalyst for the recovery of tropical cloud forests in Colombia. For Ecol Manage 99:163–170.  https://doi.org/10.1016/S0378-1127(97)00202-8 CrossRefGoogle Scholar
  52. Ochoa-Cueva P, Fries A, Montesinos P et al (2013) Spatial estimation of soil erosion risk by land-cover change in the andes of southern Ecuador. Land Degrad Dev.  https://doi.org/10.1002/ldr.2219 CrossRefGoogle Scholar
  53. Oñate-Valdivieso F, Fries A, Mendoza K et al (2018) Temporal and spatial analysis of precipitation patterns in an Andean region of southern Ecuador using LAWR weather radar. Meteorol Atmos Phys 130:473–484.  https://doi.org/10.1007/s00703-017-0535-8 CrossRefGoogle Scholar
  54. Palomeque X, Günter S, Siddons D et al (2017) Natural or assisted succession as approach of forest recovery on abandoned lands with different land use history in the Andes of Southern Ecuador. New For 48:643–662.  https://doi.org/10.1007/s11056-017-9590-8 CrossRefGoogle Scholar
  55. Parsons SA, Valdez-Ramirez V, Congdon RA, Williams SE (2014) Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region. Biogeosciences 11:5047–5056.  https://doi.org/10.5194/bg-11-5047-2014 CrossRefGoogle Scholar
  56. Potthast K, Hamer U, Makeschin F (2010) Impact of litter quality on mineralization processes in managed and abandoned pasture soils in Southern Ecuador. Soil Biol Biochem 42:56–64.  https://doi.org/10.1016/j.soilbio.2009.09.025 CrossRefGoogle Scholar
  57. Potthast K, Hamer U, Makeschin F (2012) In an Ecuadorian pasture soil the growth of Setaria sphacelata, but not of soil microorganisms, is co-limited by N and P. Appl Soil Ecol 62:103–114.  https://doi.org/10.1016/j.apsoil.2012.08.003 CrossRefGoogle Scholar
  58. Proctor J (1983) Tropical forest litterfall. I. Problems of data comparison. In: Sutton SL, Whitmore TC, Chadwick AC (eds) Tropical rain forest: ecology and management. Blackwell Scientific Publications, Oxford, pp 267–273Google Scholar
  59. Quesada CA, Lloyd J, Schwarz M et al (2010) Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7:1515–1541.  https://doi.org/10.5194/bg-7-1515-2010 CrossRefGoogle Scholar
  60. Quichimbo P, Tenorio G, Borja P et al (2012) Efectos sobre las propiedades físicas y químicas de los suelos por el cambio de la cobertura vegetal y uso del suelo: páramo de Quimsacocha al sur del Ecuador. Suelos Ecuat 42:138–153Google Scholar
  61. Quichimbo P, Veintimilla D, Carrión Y, Jiménez L (2016) Litterfall production under pine plantations in the southern Andes region of Ecuador. Enfoque UTE 7:14–25CrossRefGoogle Scholar
  62. Quichimbo P, Jiménez L, Veintimilla D et al (2017) Forest site classification in the southern Andean region of Ecuador: a case study of pine plantations to collect a base of soil attributes. Forests 8:473.  https://doi.org/10.3390/f8120473 CrossRefGoogle Scholar
  63. R Core Team (2018) R: a language and environment for statistical computing. R version 3.4.4. 51Google Scholar
  64. Radwan MA, Harrington CA, Kraft JM (1984) Litterfall and nutrient returns in red alder stands in western Washington. Plant Soil 79:343–351.  https://doi.org/10.1007/BF02184327 CrossRefGoogle Scholar
  65. Ramírez JA, León-Peláez JD, Craven D et al (2014) Effects on nutrient cycling of conifer restoration in a degraded tropical montane forest. Plant Soil 378:215–226.  https://doi.org/10.1007/s11104-014-2024-x CrossRefGoogle Scholar
  66. Scholes MC, Nowicki TE (1998) Effects of pines on soil properties and processes. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 341–353Google Scholar
  67. Sharma G (2002) Performance of an age series of Alnus-Cardamom plantations in the Sikkim Himalaya: nutrient dynamics. Ann Bot 89:273–282.  https://doi.org/10.1093/aob/mcf036 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sharma E, Ambasht RS (1987) Litterfall, decomposition and nutrient release in an age sequence of Alnus nepalensis plantation stands in the eastern Himalaya. J Ecol 75:997–1010CrossRefGoogle Scholar
  69. Silva LN, Freer-Smith P, Madsen P (2019) Production, restoration, mitigation: a new generation of plantations. New For 50:153–168.  https://doi.org/10.1007/s11056-018-9644-6 CrossRefGoogle Scholar
  70. Tapia-Armijos MF, Homeier J, Espinosa CI et al (2015) Deforestation and forest fragmentation in south Ecuador since the 1970s—losing a hotspot of biodiversity. PLoS ONE.  https://doi.org/10.1371/journal.pone.0133701 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tischer A, Potthast K, Hamer U (2014) Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia 175:375–393.  https://doi.org/10.1007/s00442-014-2894-x CrossRefPubMedGoogle Scholar
  72. Tischer A, Blagodatskaya E, Hamer U (2015) Microbial community structure and resource availability drive the catalytic efficiency of soil enzymes under land-use change conditions. Soil Biol Biochem 89:226–237.  https://doi.org/10.1016/j.soilbio.2015.07.011 CrossRefGoogle Scholar
  73. Tripathi O, Pandey H, Tripathi R (2009) Litter production, decomposition and physico-chemical properties of soil in 3 developed agroforestry systems of Meghalaya, Northeast India. Afr J Plant Sci 3:160–167Google Scholar
  74. van Voss O, Aguirre N, Hofstede R (2001) Sistemas forestales integrales para la sierra del Ecuador. ABYA-YALA, QuitoGoogle Scholar
  75. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707.  https://doi.org/10.1016/0038-0717(87)90052-6 CrossRefGoogle Scholar
  76. Vergutz L, Manzoni S, Porporato A et al (2012) Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr 82:205–220.  https://doi.org/10.1890/11-0416.1 CrossRefGoogle Scholar
  77. Wang Q, Wang S, Fan B, Yu X (2007) Litter production, leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China: effect of planting conifers with broadleaved species. Plant Soil 297:201–211.  https://doi.org/10.1007/s11104-007-9333-2 CrossRefGoogle Scholar
  78. Weber M, Stimm B, Mosandl R (2011) Review plantations for protective purposes and rehabilitation. In: Günter S, Weber M, Stimm B, Mosandl R (eds) Silviculture in the tropics SE-30. Springer, Berlin, pp 475–490CrossRefGoogle Scholar
  79. Weng C, Bush MB, Chepstow-Lusty AJ (2004) Holocene changes of Andean alder (Alnus acuminata) in highland Ecuador and Peru. J Quat Sci 19:685–691.  https://doi.org/10.1002/jqs.882 CrossRefGoogle Scholar
  80. Wilcke W, Yasin S, Abramowski U et al (2002) Nutrient storage and turnover in organic layers under tropical montane rain forest in Ecuador. Eur J Soil Sci 53:15–27.  https://doi.org/10.1046/j.1365-2389.2002.00411.x CrossRefGoogle Scholar
  81. Zhang H, Yuan W, Dong W, Liu S (2014) Seasonal patterns of litterfall in forest ecosystem worldwide. Ecol Complex 20:240–247.  https://doi.org/10.1016/j.ecocom.2014.01.003 CrossRefGoogle Scholar
  82. Zhu X, Liu W, Chen H et al (2019) Effects of forest transition on litterfall, standing litter and related nutrient returns: implications for forest management in tropical China. Geoderma 333:123–134.  https://doi.org/10.1016/j.geoderma.2018.07.023 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Landscape EcologyWWU – University of MuensterMuensterGermany
  2. 2.Carrera de Ingeniería Agronómica, Facultad de Ciencias AgropecuariasUniversidad de CuencaCuencaEcuador
  3. 3.Departamento de Ciencias BiológicasUniversidad Técnica Particular de LojaLojaEcuador
  4. 4.Departamento de Recursos Hídricos y Ciencias AmbientalesUniversidad de CuencaCuencaEcuador
  5. 5.Department of Ecology and Ecosystem Management, Institute of SilvicultureTechnische Universität MünchenFreisingGermany
  6. 6.Carrera de Ingeniería ForestalUniversidad Nacional de LojaLojaEcuador
  7. 7.Institute of Soil ScienceFriedrich Schiller University JenaJenaGermany
  8. 8.Thünen Institute of International Forestry and Forest EconomicsHamburgGermany

Personalised recommendations