Advertisement

New Forests

, Volume 49, Issue 6, pp 871–892 | Cite as

Assessing water use and soil water balance of planted native tree species under strong water limitations in Northern Chile

  • Horacio E. BownEmail author
  • Juan Pablo Fuentes
  • Amanda M. Martínez
Article

Abstract

Some forest plantations with native species are established in semiarid central Chile to compensate for industrial activities such as those of mining. Two of those operational forest plantations were monitored from age 1 to 3 years-old (2014–2016). Some plant attributes and soil volumetric water content (VWC) were monitored for eight native tree species (Acacia caven, Schinus polygamus, Porlieria chilensis, Lithraea caustica, Quillaja saponaria, Cryptocarya alba, Drimys winteri and Maytenus boaria), and a water balance model fitted to assess plant water use. Site preparation comprised planting holes of 40 cm × 40 cm by 50 cm in depth dug with a backhoe. Substrate was removed and mixed with compost in proportion 70:30 before mixing it in the planting hole. Planting holes acted as water reservoirs over the study period with soil VWC generally increasing with soil depth being also less variable deeper than in the upper soil layers. The ratio of adaxial (upper leaf side) to abaxial (lower leaf side) stomatal conductance approximately followed a species gradient from xeric to mesic. Irrigation represented about 26% and 53% of the total water input for the sclerophyll and the D. winteri plantation, respectively. At the plant level (0.4 × 0.4 m), soil evaporation and transpiration of D. winteri (273 and 232 mm year−1, equivalent to 43.7 and 37.1 L plant−1, respectively) were about twofold the values for the sclerophyllous/malacophyllous plantation (138 and 128 mm year−1, 22.1 and 20.5 L plant−1, respectively). We suggest the water budget for the sclerophyll/malacophyllous plantation was tight but feasible to be adjusted while for D. winteri irrigation was excessive, could be drastically reduced, and suppressed altogether if planted in gullies. We believe water balance models and soil moisture content sensors could be used to better plan and manage irrigation frequency and amounts in compensation forest plantations in semiarid central Chile.

Keywords

Water balance Forest plantations Native species Copper mining impacts 

Notes

Acknowledgements

This study was funded by Antofagasta Minerals through a research agreement with the Faculty of Forestry & Nature Conservation, University of Chile, entitled “Water use efficiency of plant species in forest plantations in the Coquimbo Region (2014–2016)”. We gratefully acknowledged the contribution of Mar Quiñonero and José Miguel Pardo for the technical support and dedication carrying out intensive field work. We gratefully acknowledge the valuable comments and suggestions made to improve the manuscript by the reviewers and the editor of New Forests.

Supplementary material

11056_2018_9689_MOESM1_ESM.pdf (9.3 mb)
Supplementary material 1 (PDF 9532 kb)

References

  1. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56. FAO, Rome. ISBN 92-5-104219-5Google Scholar
  2. Armesto JJ, Pickett ST (1985) A mechanistic approach to the study of succession in the Chilean matorral. Rev Chil Hist Nat.  https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 CrossRefGoogle Scholar
  3. Armesto JJ, Arroyo MTK, Hinojosa LF (2007) The mediterranean environment of Central Chile. In: Veblen TTY, Kenneth R, Orme AR (eds) The physical geography of South America. Oxford University Press, Oxford, pp 184–199Google Scholar
  4. Aronson J, Clewell AF, Blignaut JN, Milton SJ (2006) Ecological restoration: a new frontier for nature conservation and economics. J Nat Conserv 14(3–4):135–139.  https://doi.org/10.1016/j.jnc.2006.05.005 CrossRefGoogle Scholar
  5. Becerra PI, Cruz G, Ríos S, Castelli G (2013) Importance of irrigation and plant size in the establishment success of different native species in a degraded ecosystem of central Chile. Bosque 34(1):103–111Google Scholar
  6. Beguería S, Vicente-Serrano SM (2017) Calculation of the Standardised Precipitation-Evapotranspiration Index. Package “SPEI”. http://sac.csic.es/spei. Accessed 5 Oct 2018
  7. Center for Climate and Resilience Research (2015) Report to the Nation: the 2010–2015 mega-drought—a lesson for the future. Editors: Susana Bustos, Laura Gallardo, René Garreaud and Nicole Tondreau. Santiago, Chile. 28p. www.cr2.cl. Accessed 18 Sept 2018
  8. Chapin, S.F., Matson, P. A., & Vitousek, P. M. (2012). Principles of terrestrial ecosystem ecology.  https://doi.org/10.1007/978-1-4419-9504-9 CrossRefGoogle Scholar
  9. Clarin (2015) Más de 600 mil personas dependen en Chile del agua de camiones aljibe. Newspaper “El Clarín de Chile”. Edition March 9th, 2015. Web site: http://www.elclarin.cl/web/noticias/medios-y-periodismo/22-medio-ambiente/14967-mas-de-600-mil-personas-dependen-en-chile-del-agua-de-camiones-aljibe.html. Accessed 19 May 2018
  10. CONAF–Corporación Nacional Forestal (1999) Catastro y Evaluación de Recursos vegetacionales Nativos de Chile. Proyecto CONAF-CONAMA-BIRF, Santiago, p 89Google Scholar
  11. Congreso Nacional (2008) Ley sobre Recuperación del Bosque Nativo y Fomento Forestal. Ley número 20 283. Gobierno de ChileGoogle Scholar
  12. Dí́az F, Jiménez C, Tejedor, M, Mejías G (2004) The use of tephra mulch increases soil fertility (Lanzarote, Spain). In: Raine SR, Biggs AJW, Menzies NW, Freebairn DM, Tolmie PE (eds) Conserving soil and water for society: sharing solutions. Proc. 13th international soil conservation organisation conference. 4-9th July, Brisbane. ASSSI/IECA. Paper No. 647, p. 4Google Scholar
  13. Donoso C (2008) Ecología Forestal: El Bosque y su Medio Ambiente. Editorial Universitaria, Santiago, Santiago. ISBN 9789561119710Google Scholar
  14. Donoso S, Peña K, Pacheco C, Luna G, Aguirre A (2011) Respuesta fisiológica y de crecimiento en plantas de Quillaja saponaria y Cryptocarya alba sometidas a restricción hídrica. Bosque (Valdivia) 32:187–195.  https://doi.org/10.4067/S0717-92002011000200009 CrossRefGoogle Scholar
  15. Donoso S, Peña-Rojas K, Pacheco C, Durán S, Santelices R, Mascaró C (2015) The physiological and growth response of Acacia caven under water stress and the application of different levels of biosolids. Cien Inv Agr 42:273–283.  https://doi.org/10.4067/S0718-16202015000200013 CrossRefGoogle Scholar
  16. Ekberg N, Åstrand S (2006) Rural drinking water in Illapel, Chile: investigation of water supply and metal content. Minor Field Study 121, Committee of Tropical Ecology Uppsala University, Sweden, 29 p. ISSN 1653-5634Google Scholar
  17. Ernst and Young (2017) Chile’s mining and metals investment guide 2016–2017. Ernst & Young Chile. Santiago, Chile, 75 p. https://www.eychile.cl/Content/pdf/Estudios/12052017154045_pdf_Gu%C3%ADa%20para%20la%20inversión%20minera%20en%20Chile.pdf. Accessed 18 Sept 2018
  18. Fuentes ER, Hajek ER (1979) Patterns of landscape modification in relation to agricultural practice in central Chile. Environ Conserv 6(4):265–271.  https://doi.org/10.1017/S0376892900003374 CrossRefGoogle Scholar
  19. Gajardo R (1994) La vegetación natural de Chile. Clasificación y distribución geográfica. Editorial Universitaria, Santiago de ChileGoogle Scholar
  20. INFOR (1997) Potencialidades de especies y sitios para una diversificación silvícola Nacional: Monografía de Canelo, Drimys winteri. Santiago de Chile, 65 pGoogle Scholar
  21. Jarvis PG, Mcnaughton KG (1986) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15(C):1–49.  https://doi.org/10.1016/S0065-2504(08)60119-1 CrossRefGoogle Scholar
  22. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen–Geiger climate classification updated. Meteorol Z 15(3):259–263.  https://doi.org/10.1127/0941-2948/2006/0130 CrossRefGoogle Scholar
  23. Lin HS, Kogelmann W, Walker C, Bruns MA (2006) Soil moisture patterns in a forested catchment: a hydropedological perspective. Geoderma 131(3–4):345–368.  https://doi.org/10.1016/j.geoderma.2005.03.013 CrossRefGoogle Scholar
  24. Malagnoux M, Sène EH, Atzmon N (2007) Forests, trees and water in arid lands: a delicate balance. Unasylva 58:24–29Google Scholar
  25. Meza FJ (2013) Recent trends and ENSO influence on droughts in Northern Chile: an application of the standardized precipitation evapotranspiration index. Weather Clim Extrem 1:51–58.  https://doi.org/10.1016/j.wace.2013.07.002 CrossRefGoogle Scholar
  26. Montecinos A, Aceituno P (2003) Seasonality of the ENSO-related rainfall variability in central Chile and associated circulation anomalies. J Clim 16:281–296CrossRefGoogle Scholar
  27. Mooney HA, Kummerow J (1971) The comparative water economy of representative evergreen sclerophyll and drought deciduous shrubs of Chile. Bot Gaz 132:245–252.  https://doi.org/10.1017/CBO9781107415324.004 CrossRefGoogle Scholar
  28. Mukherjee A, Kundu M, Sarkar S (2010) Role of irrigation and mulch on yield, evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L.). Agric Water Manag 98(1):182–189.  https://doi.org/10.1016/j.agwat.2010.08.018 CrossRefGoogle Scholar
  29. Noy-Meir I (1973) Desert ecosystems: environment and Producers. Annu Rev Ecol Syst 4:25–51.  https://doi.org/10.1146/annurev.es.04.110173.000325 CrossRefGoogle Scholar
  30. Peña-Rojas K, Donoso S, Pacheco C, Riquelme A, Gangas R, Guajardo A, Durán S (2018) Respuestas morfo-fisiológicas de plantas de Lithraea caustica (Anacardiaceae) sometidas a restricción hídrica controlada. Bosque 39:27–36.  https://doi.org/10.4067/S0717-92002018000100027 CrossRefGoogle Scholar
  31. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 18 Sept 2018
  32. Rey-Benayas JM, López-Pintor A, García C, De la Cámara N, Strasser R, Sal AG (2002) Early establishment of planted Retama sphaerocarpa seedlings under different levels of light, water and weed competition. Plant Ecol 159(2):201–209.  https://doi.org/10.1023/A:1015562623751 CrossRefGoogle Scholar
  33. Rodríguez R, Matthei O, Quezada M (1983) Flora arbórea de Chile. Ediciones Universidad de Concepción, ConcepciónGoogle Scholar
  34. Santra P, Kumar M, Kumawat RN, Painuli DK, Hati KM, Heuvelink GBM, Batjes NH (2018) Pedotransfer functions to estimate soil water content at field capacity and permanent wilting point in hot Arid Western India. J Earth Syst Sci 127:1–16.  https://doi.org/10.1007/s12040-018-0937-0 CrossRefGoogle Scholar
  35. Siles G, Rey PJ, Alcántara JM, Bastida JM, Herreros JL (2010) Effects of soil enrichment, watering and seedling age on establishment of Mediterranean woody species. Acta Oecol 36(4):357–364.  https://doi.org/10.1016/j.actao.2010.03.002 CrossRefGoogle Scholar
  36. Tenhunen JD, Catarino FM, Lange OL, Oechel WC (1987) Plant response to stress: functional analysis in mediterranean ecosystems. In: NATO ASI Series G: ecological sciences Vol. 15. Proceedings of the NATO advanced research workshop on plant response to stress - functional analysis in mediterranean ecosystems held at Hotel do Mar, Sesimbra, Portugal, October 13-18, 1985. Springer, Berlin, Heidelberg, p. 661.  https://doi.org/10.1007/978-3-642-70868-8 Google Scholar
  37. Watt MS, Whitehead D, Richardson B, Mason EG, Leckie AC (2003) Modelling the influence of weed competition on the growth of young Pinus radiata at a dryland site. For Ecol Manag 178:271–286CrossRefGoogle Scholar
  38. Whitehead D, Leathwick JR, Walcroft AS (2001) Modeling annual carbon uptake for the indigenous forests of New Zealand. For Sci 47(1):9–20Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Faculty of Forestry and Nature ConservationUniversidad de ChileLa PintanaChile

Personalised recommendations