Advertisement

New Forests

, Volume 50, Issue 2, pp 267–282 | Cite as

Should we use meshes or solid tube shelters when planting in Mediterranean semiarid environments?

  • Juan A. OlietEmail author
  • Raul Blasco
  • Patricio Valenzuela
  • María Melero de Blas
  • Jaime Puértolas
Article

Abstract

Tree shelters in Mediterranean environments have a two-sided effect. They not only protect seedlings from browsing but also ameliorate microclimatic conditions, improving post-planting survival and growth. However, the ecophysiological basis of these effects are poorly understood. A factorial experiment combining light transmissivity and shelter type (solid tube vs. mesh wall) was carried out to assess the impact of contrasting microclimatic characteristics on seedling performance and physiological stress levels of shelters in two Mediterranean shrubland species (Quercus coccifera and Rhamnus lycioides) planted in a semiarid site. Even though seedlings in solid tube shelters experienced higher temperature and were slightly more photoinhibited, they had higher predawn water potential and, in general, better survival and growth than in mesh wall shelters. However, these effects were species-specific, with Rh. lycioides more favoured by solid wall shelters than Q. coccifera. However, root growth cannot explain these interactions between species and shelter type on seedling survival. Since light transmission had a marginal effect compared with wall type, we proposed that the observed effects and interaction with species are not dependent on light intensity or temperature but on other microclimatic differences like air velocity or light quality and distribution. Further studies should assess the importance of these factors on post-planting growth and physiological stress levels, which can be critical for matching the correct tree shelters type for each species in plantations in semiarid environments.

Keywords

Afforestation Restoration Water potential Chlorophyll fluorescence Quercus coccifera Rhamnus lycioides 

Notes

Acknowledgements

This study was funded by TRACE-Project PET2008_0325 (Spanish Ministry of Science and Innovation) and co-financed by Respol Química S.A, WWF program to restore Spanish forests and by Marie Skodowska-Curie Research and Innovation Staff Exchange (RISE) Program (SuFoRun #691149 Project). The comments of two anonymous reviewers substantially improved the manuscript.

Supplementary material

11056_2018_9659_MOESM1_ESM.pdf (211 kb)
Supplementary material 1 (PDF 210 kb)

References

  1. Alía Miranda R, García Del Barrio JM, Iglesias Sauce S, Mancha Núñez JA, de Miguel y Del Ángel J, Nicolás Peragón JL, Pérez Martín F, Sánchez de Ron D (2009) Regiones de procedencia de especies forestales españolas. Organismo Autónomo Parques Nacionales, MadridGoogle Scholar
  2. Baquedano FJ, Castillo FJ (2006) Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercis ilex. Trees 20:689–700CrossRefGoogle Scholar
  3. Bellot J, Ortiz de Urbina JM, Bonet A, Sánchez JR (2002) The effects of treeshelters on the growth of Quercus coccifera L. seedlings in a semiarid environment. Forestry 75(1):89–106CrossRefGoogle Scholar
  4. Bellot J, Maestre FT, Chirino E, Hernández N, de Urbina JO (2004) Afforestation with Pinus halepensis reduces native shrub performance in a Mediterranean semiarid area. Acta Oecol 25:7–15CrossRefGoogle Scholar
  5. Bergez JE, Dupraz ZC (1997) Transpiration rate of Prunus avium L. Seedlings inside an unventilated treeshelter. For Ecol Manag 97:255–264CrossRefGoogle Scholar
  6. Bergez JE, Dupraz ZC (2000) Effect of ventilation on growth of Prunus avium seedlings grown in treeshelters. Agric For Meteorol 104:199–214CrossRefGoogle Scholar
  7. Bergez JE, Dupraz ZC (2009) Radiation and thermal microclimate in tree shelter. Agric For Meteorol 149:179–186CrossRefGoogle Scholar
  8. Bjorkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504CrossRefGoogle Scholar
  9. Burney OT, Jacobs DF (2018) Species selection—a fundamental silvicultural tool to promote forest regeneration under high animal browsing pressure. For Ecol Manag 408:67–74CrossRefGoogle Scholar
  10. Calvete C, Estrada R, Angulo E, Cabezas-Ruiz S (2004) Habitat factors related to wild rabbit conservation in an agricultural landscape. Landscape Ecol 19:531–542CrossRefGoogle Scholar
  11. Chirino Miranda E, Puertolas Simon E, Garcia Vinas JI, Gaston Gonzalez A, Prada Saez MA (2013) Rhamnus alaternus L. y Rhamnus lycioides L. In: Navarro Cerrillo RM, Nicolás Peragón JL, Prada Sáez MA, Serrada Hierro R, Pemán García J (eds) Producción y Manejo de semillas y plantas forestales. Naturaleza y Parques Nacionales. Serie Forestal. Ministerio de Agricultura, Alimentación y Medio Ambiente, MadridGoogle Scholar
  12. Close DC, Ruthrof KX, Turner S, Rokich DP, Dixon KW (2009) Ecophysiology of species with distinct leaf morphologies: effects of plastic and shadecloth tree guards. Restor Ecol 17(1):33–41CrossRefGoogle Scholar
  13. Cortina J, Amat B, Castillo V, Fuentes D, Maestre FT, Padilla FM, Rojo L (2011) The restoration of vegetation cover in the semi-arid Iberian southeast. J Arid Environ 75:1377–1384CrossRefGoogle Scholar
  14. Defaa C, Elantry S, El Alam SL, Achour A, El Mousadik A, Msanda F (2015) Effects of tree shelters on the survival and growth of Argania spinosa seedlings in Mediterranean arid environment. Int J Ecol.  https://doi.org/10.1155/2015/124075 Google Scholar
  15. Del Campo A, Navarro RM, Aguililla A, Gonzalez E (2006) Effect of tree shelter design on water condensation and run-off and its potential benefit for reforestation establishment in semiarid climates. For Ecol Manag 235:107–115CrossRefGoogle Scholar
  16. Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626CrossRefGoogle Scholar
  17. Devine W, Harrington CA (2008) Influence of four tree shelter types on microclimate and seedling performance of Oregon white oak and western redcedar. Research Paper PNW-RP-576, USDA Forest Service, Pacific NorthWest Research StationGoogle Scholar
  18. Dupraz C, Bergez JE (1999) Carbon dioxide limitation of the photosynthesis of Prunus avium L. seedlings inside an unventilated treeshelter. For Ecol Manag 119:89–97CrossRefGoogle Scholar
  19. Gandullo JM (1985) Ecología Vegetal. Fundación Conde del Valle de Salazar, MadridGoogle Scholar
  20. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63:90–104CrossRefGoogle Scholar
  21. Gómez-Miguel VD, Badía-Villas D (2016) Soil distribution and classification. In: Gallardo JF (ed) The soils of Spain, World soils book series. Springer, Berlin, pp 11–48Google Scholar
  22. Jacobs DF (2011) Reforestation of a salvage-logged high-elevation clearcut: Engelman spruce seedling response to tree shelters after 11 growing seasons. West J Appl For 26(2):53–56Google Scholar
  23. Jiménez MN, Navarro FB, Ripoll MA, Bocio I, De Simón E (2005) Effect of shelter tubes on establishment and growth of Juniperus thurifera L. (Cupressaceae) seedlings in Mediterranean semi-arid environment. Ann For Sci 62:717–725CrossRefGoogle Scholar
  24. Kalaji HM, Schansker G, Ladle RJ et al (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158CrossRefGoogle Scholar
  25. Kjelgren R, Rupp LA (1997) Establishment in treeshelters I: shelters reduce growth, water use, and hardiness, but not drought avoidance. HortScience 32:1281–1283CrossRefGoogle Scholar
  26. Lambers H, Chapin FS, Pons TJ (2008) Plant physiological ecology, 2nd edn. Springer, New York, p 604CrossRefGoogle Scholar
  27. Leverkus A, Castro J, Puerta-Piñero C, Rey Benayas JM (2013) Suitability of the management of habitat complexity, acorn burial depth, and a chemical repellent for post-fire reforestation of oaks. Ecol Eng 53:15–22CrossRefGoogle Scholar
  28. Maestre F, Cortina J (2003) Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe. Appl Soil Ecol 23:199–209CrossRefGoogle Scholar
  29. Maestre FT, Cortina J (2004) Are Pinus halepensis plantations useful as a restoration tool in semiarid Mediterranean areas? For Ecol Manag 198:303–317CrossRefGoogle Scholar
  30. Mariotti B, Maltoni A, Jacobs DF, Tani A (2015) Tree shelters affect shoot and root system growth and structure in Quercus robur during regeneration establishment. Eur J Forest Res 134(4):641–652CrossRefGoogle Scholar
  31. Martínez-Ferri E, Balaguer L, Valladares F, Chico JM, Manrique E (2000) Energy dissipation in drought-avoiding and drought-tolerant tree species at midday during the Mediterranean summer. Tree Physiol 20:131–138CrossRefGoogle Scholar
  32. Matías L, Castro J, Villar-Salvador P, Quero JL, Jump AS (2017) Differential impact of hotter drought on seedling performance of five ecologically distinct pine species. Plant Ecol 218:201–212CrossRefGoogle Scholar
  33. Methy M, Gillon D, Houssard C (1997) Temperature-induced changes of photosystem II activity in Quercus ilex and Pinus halepensis. Can J For Res 27:31–38CrossRefGoogle Scholar
  34. Niinemets U, Keenan T (2014) Photosynthetic responses to stress in Mediterranean evergreens: mechanisms and models. Environ Exp Bot 103:24–41CrossRefGoogle Scholar
  35. Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica, Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, BellaterraGoogle Scholar
  36. Oliet JA, Jacobs DF (2007) Microclimatic conditions and plant morpho-physiological development within a tree shelter environment during establishment of Quercus ilex seedlings. Agric For Meteorol 144:58–72CrossRefGoogle Scholar
  37. Oliet JA, Navarro R, Contreras O (2003) Evaluación de la aplicación de mejoradores y tubos en repoblaciones forestales. Consejería de Medio Ambiente de la Junta de Andalucía, AndalusiaGoogle Scholar
  38. Oliet JA, Vázquez de Castro A, Puértolas J (2015) Establishing Quercus ilex under Mediterranean dry conditions: sowing recalcitrant acorns versus planting seedlings at different depths and tube shelter light transmissions. New Forest 46:869–883CrossRefGoogle Scholar
  39. Padilla FM, Miranda J, Pugnaire FI (2007) Early root growth plasticity in seedlings of three Mediterranean woody species. Plant Soil 296:103–113CrossRefGoogle Scholar
  40. Padilla FM, Miranda JD, Ortega R, Hervás M, Sánchez J, Pugnaire FI (2011) Does shelter enhance early seedling survival in dry environments? A test with eight Mediterranean species. Appl Veg Sci 14:31–39CrossRefGoogle Scholar
  41. Pemán García J, Navarro Cerrillo RM, Nicolás Peragón JL, Prada Sáez MA, Serrada Hierro R (eds) (2013) Producción y Manejo de semillas y plantas forestales. Naturaleza y Parques Nacionales. Serie Forestal. Ministerio de Agricultura, Alimentación y Medio Ambiente, MadridGoogle Scholar
  42. Pemán J, Peguero-Pina JJ, Valladares F, Gil-Pelegrín E (2010) Evaluation of unventilated treeshelters in the context of Mediterranean climate: insights from a study on Quercus faginea seedlings assessed with a 3D architectural plant model. Ecol Eng 36:517–526CrossRefGoogle Scholar
  43. Piñeiro J, Maestre FT, Bartolomé L, Valdecantos A (2013) Ecotechnology as a tool for restoring degraded drylands: a meta-analysis of field experiments. Ecol Eng 61(2013):133–144CrossRefGoogle Scholar
  44. Puértolas J, Oliet JA, Jacobs DF, Benito LF, Peñuelas JL (2010) Is light the key factor for success of tube shelters in forest restoration plantings under Mediterranean climates? For Ecol Manag 260:610–617CrossRefGoogle Scholar
  45. Rosenberg ND, Blad BL, Berma SB (1983) Microclimate: the biological environment, 2nd edn. Wiley, New York, p 495Google Scholar
  46. Sakcali MS, Ozturk M (2004) Eco-physiological behaviour of some mediterranean plants as suitable candidates for reclamation of degraded areas. J Arid Environ 57:1–13CrossRefGoogle Scholar
  47. Soliveres S, Monerris J, Cortina J (2008) El uso de parches artificiales mejora el rendimiento de una repoblación de Rhamnus lycioides en medio semiárido. Cuad Soc Esp Cienc For 28:125–130Google Scholar
  48. Taylor TS, Loewenstein EF, Chappelka AH (2006) Effect of animal browse protection and fertilizer application on the establishment of planted Nuttall oak seedlings. New Forest 32:133–143CrossRefGoogle Scholar
  49. Townsend AJ, Retkute R, Chinnathambi K, Randall JW, Foulkes J, Carmo-Silva E, Murchie EH (2017) Suboptimal photosynthetic acclimation in wheat. Plant Physiol.  https://doi.org/10.1104/pp.17.01213 Google Scholar
  50. Trubat R, Cortina J, Vilagrosa A (2008) Short-term nitrogen deprivation increases field performance in nursery seedlings of Mediterranean woody species. J Arid Environ 72:879–890CrossRefGoogle Scholar
  51. Trubat R, Cortina J, Vilagrosa A (2011) Nutrient deprivation improves field performance of woody seedlinngs in a degraded semi-arid shrubland. Ecol Eng 37:1164–1173CrossRefGoogle Scholar
  52. Vallejo VR, Smanis A, Chirino E, Fuentes D, Valdecantos A, Vilagrosa A (2012) Perspectives in dryland restoration: approaches for climate change adaptation. New Forest 43:561–579CrossRefGoogle Scholar
  53. Van Lerbherghe P (2014) Proteger los árboles contra los daños de la fauna cinegética. Los protectores de malla Proyecto Pirinoble. Unión Europea. Institut pour le Développement Forestier, ParisGoogle Scholar
  54. Vázquez de Castro A, Oliet JA, Puértolas J, Jacobs DF (2014) Light transmissivity of tube shelters affects root growth and biomass allocation of Quercus ilex L. and Pinus halepensis Mill. Ann For Sci 71:91–99CrossRefGoogle Scholar
  55. Vilagrosa A, Bellot J, Vallejo VR, Gil-Pelegrin E (2003) Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J Exp Bot 54:2015–2024CrossRefGoogle Scholar
  56. Villar-Salvador P, Puértolas J, Cuesta B, Peñuelas JL, Uscola M, Heredia-Guerrero N, Rey Benayas JM (2012) Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations. Insights from an ecophysiological conceptual model of plant survival. New Forest 43(5–6):755–770CrossRefGoogle Scholar
  57. Ward JS, Gent Martin PN, Stephens GR (2000) Effects of planting stock quality and browse protection-type on height growth of northern red oak and eastern white pine. For Ecol Manag 127:205–216CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Departamento de Sistemas y Recursos NaturalesUniversidad Politécnica de MadridMadridSpain
  2. 2.Center of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
  3. 3.World Wildlife Foundation-EspañaMadridSpain
  4. 4.Lancaster Environment CentreLancaster UniversityLancasterUK

Personalised recommendations