New Forests

, Volume 46, Issue 2, pp 235–246 | Cite as

The effect of soil compaction at different depths on cork oak seedling growth

  • Cati Dinis
  • Peter Surový
  • Nuno Ribeiro
  • Maria R. G. Oliveira


Soil compaction promoted either by inadequate management (pressure of livestock and machinery) or by soil natural conditions (podzolisation) can influence the growth of cork oak seedlings. We hypothesized that compaction could be related with the lack of natural regeneration and decline on cork oak stands. In this paper, we evaluated the response of cork oak seedlings growth in terms of area and biomass production for above and belowground parts at different compaction depths tested for a sandy-loam soil. This study was done in a greenhouse, with germinated seedlings. Three treatments were applied. One no-compaction treatment (control, C0) and two with a soil compacted layer at 60 cm (C1) and 30 cm depth (C2). The level of compacted layer was 1.37 MPa of mechanical resistance. Results show that tap root length is negatively affected by compaction at 60 and 30 cm depth. Below and aboveground biomass are affected by compaction at 30 cm depth. In addition, the leaf area results demonstrate that compaction is a sensitive factor for this parameter. In this 1-year stage, plants spend more energy in roots production. Due to soil formation and bad management of cork oak stands, soil compaction at depth could be a cause for the observed lack of natural regeneration, affecting the growth at earlier stages and probably for the decline of cork oak populations.


Cork oak (Quercus suber L.) seedlings Soil compaction Above and belowground biomass Fine roots distribution 



First author is grateful for a PhD scholarship from “Bento Jesus Caraça Program”, from University of Évora. This work was developed with the support of Institute of Mediterranean Agrarian and Environmental Sciences of University of Évora (ICAAM) and the Department of Crop Science of University of Évora. Comments and suggestions made by two anonymous reviewers improved the manuscript.


  1. AFN (2010) Inventário Florestal Nacional 2005–2006. Autoridade Florestal Nacional, Lisboa. ISBN 978-972-8097-76-9Google Scholar
  2. Alameda D, Villar R (2009) Moderate soil compaction: implications on growth and architecture in seedlings of 17 woody plant species. Soil Till Res 103:325–331. doi: 10.1016/j.still.2008.10.029 CrossRefGoogle Scholar
  3. Alameda D, Villar R (2012) Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions. Environ Exp Bot 79:49–57CrossRefGoogle Scholar
  4. Arvidsson J (1999) Nutrient uptake and growth of barley as affected by soil compaction. Plant Soil 208:9–19CrossRefGoogle Scholar
  5. Bassett IE, Simcock RC, Mitchell ND (2005) Consequences of soil compaction for seedling establishment: implications for natural regeneration and restoration. Aust Ecol 30:827–833. doi: 10.1111/j.1442-9993.2005.01525.x CrossRefGoogle Scholar
  6. Bejarano MD, Villar R, Murillo AM, Quero JL (2010) Effects of soil compaction and light on growth of Quercus pyrenaica Willd. (Fagaceae) seedlings. Soil Till Res 110:108–114. doi: 10.1016/j.still.2010.07.008 CrossRefGoogle Scholar
  7. Benghough AG, Mullins CE (1990) Mechanical impedance to root growth: a review of experimental techniques and root growth responses. J Soil Sci 41(3):341–358. doi: 10.1111/j.1365-2389.1990.tb00070.x
  8. Beulter NA, Centurion JF (2004) Compactação do solo no desenvolvimento radicular e na produtividade da soja. Pesq Agropec Bras 39(6):581–588. doi: 10.1590/S0100-204X2004000600010
  9. Cardillo E, Bernal CJ (2006) Morphological response and growth of cork oak (Quercus suber L.) seedlings at different shade levels. For Ecol Manag 222:296–301. doi: 10.1016/j.foreco.2005.10.026 CrossRefGoogle Scholar
  10. Chirino E, Vilagrosa A, Hernandez EI, Matos A, Vallejo VR (2008) Effects of a deep container on morpho-functional characteristics and root colonization in Quercus suber L. seedlings for reforestation in Mediterranean climate. For Ecol Manag 256:779–785. doi: 10.1016/j.foreco.2008.05.035 CrossRefGoogle Scholar
  11. Coder KD (1999) Tree root growth control series: root growth requirements and limitations, University of Georgia, Cooperative extension service forest resources publication, FOR98-9Google Scholar
  12. Coder KD (2007) Soil compaction stress & trees: symptoms, measures, treatments. Warnell School Outreach Monograph, WSFNR07-9Google Scholar
  13. Costa JL, Silva ALL, Scheidt GN, Lemus EAE, Soccol CR (2010) Estabelecimento in vitro de sementes de pinhão manso (Jatrophacurcas L.)—Euphorbiaceae. Caderno Pesquisa Série Biol 22:5–12Google Scholar
  14. Cubera E, Moreno G, Solla A, Madeira M (2009) Quercus ilex root growth in response to heterogeneous conditions of soil bulk density and soil NH4-N content. Soil Till Res 103:16–22. doi: 10.1016/j.still.2008.09.002 CrossRefGoogle Scholar
  15. Cubera E, Moreno G, Solla A, Madeira M (2012) Root system of Quercus suber L. seedlings in response to herbaceous competition and different watering and fertilization regimes. Agrofor. 85:205–214. doi: 10.1007/s10457-012-9492-x CrossRefGoogle Scholar
  16. David TS, Cabral MT, Sardinha RMA (1992) A mortalidade dos sobreiros e a seca. Finisterra XXVII:17–24Google Scholar
  17. David TS, Henriques MO, Kurz-Besson C, Nunes J, Valente F, Vaz M, Pereira JS, Siegwolf R, Chaves MM, Gazarini LC, David JS (2007) Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol 27:793–803. doi: 10.1093/treephys/27.6.793 CrossRefPubMedGoogle Scholar
  18. FAO (2006) World reference base for soil resources. Food and Agriculture Organization of the United Nations, Rome. ISBN:92-5-105511-4Google Scholar
  19. Ganatsas P, Spanos I (2005) Root system asymmetry of Mediterranean pines. Plant Soil 278:75–83. doi: 10.1007/s11104-005-1092-3 CrossRefGoogle Scholar
  20. Gomez-Aparicio L, Valladares F, Zamora R (2006) Differential light responses of Mediterranean tree saplings: linking ecophysiology with regeneration niche in four co-occurring species. Tree Physiol 26:947–958. doi: 10.1093/treephys/26.7.947 CrossRefPubMedGoogle Scholar
  21. Gouveia AC, Freitas H (2008) Intraspecific competition and water use efficiency in Quercus suber: evidence of an optimum tree density? Trees Struct Funct 22(4):521–530. doi: 10.1007/s00468-008-0212-0
  22. Hakansson I, Stenberg M, Rydberg T (1998) Long term experiments with different depths of mouldboard plough in Sweden. Soil Till Res 46:209–223. doi: 10.1016/S0167-1987(98)00099-3 CrossRefGoogle Scholar
  23. Kozlowski TT (1999) Soil compaction and growth of woody plants. Scand J For Res 14:596–619. doi: 10.1080/02827589908540825 CrossRefGoogle Scholar
  24. Kristoffersen AO, Riley H (2005) Effects of soil compaction and moisture regime on the root and shoot growth and phosphorus uptake of barley plants growing on soils with varying phosphorus status. Nutr Cycl Agroecosyst 72:135–146. doi: 10.1007/s10705-005-0240-8 CrossRefGoogle Scholar
  25. Laliberte E, Cogliastro A, Bouchard A (2008) Spatiotemporal patterns in seedling emergence and early growth of two oak species direct-seeded on abandoned pastureland. Ann For Sci 65(4):407. doi: 10.1051/forest:2008019 CrossRefGoogle Scholar
  26. Pagliai M, Vignozzi N, Pellegrini S (2004) Soil structure and the effect of management practices. Soil Till. Res. 79:131–143CrossRefGoogle Scholar
  27. Pereira H, Tomé M (2004) Non-wood products: cork oak. In: Burley J, Evans J, Youngquist JA (eds) Encyclopedia of forest sciences. Elsevier, Oxford, pp 613–620. ISBN 978-0-12-145160-8 CrossRefGoogle Scholar
  28. Pérez-Ramos IM, Gomez-Aparicio L, Villar R, Garcia LV, Maranon T (2010) Seedling growth and morphology of three oak species along field resources gradients and seed mass variation: a seedling age-dependent response. J Veg Sci 21:419–437Google Scholar
  29. Pinheiro AC, Ribeiro NA, Surový P, Ferreira AG (2008) Economic implications of different cork oak forest management systems. Int J Sustain Soc 1(2):149–157. doi: 10.1504/IJSSOC.2008.022571
  30. Queiroz-Voltan RB, Nogeuria SSS, Miranda MAC (2000) Aspectos da estrutura da raíz e do desenvolvimento de plantas de soja em solos compactados. Pesq Agro Pecu Bras 35:929–938. doi: 10.1590/S0100-204X2000000500010 CrossRefGoogle Scholar
  31. Quero JL, Villar R, Maranon T, Zamora R, Vega D, Sack L (2008) Relating leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings of four Quercus species. Funct Plant Biol 35:725–737Google Scholar
  32. Ribeiro NA, Surový P (2008) Inventário nacional de mortalidade de sobreiro na fotografia aérea digital de 2004/2006. ISBN:978-989-8132-01-7Google Scholar
  33. Ribeiro NA, Surový P, Oliveira AC (2006) Modeling cork oak production in Portugal. In: Hasenauer H (ed) Sustainable forest management: growth models for Europe. Springer, Berlin, pp 285–313. doi: 10.1007/3-540-31304-4_18
  34. Ribeiro NA, Surový P, Pinheiro A (2010) Adaptive management on sustainability of cork oak woodlands. In: Manos B, Paparrizos K, Matsatsinis N, Papathanasiou J (eds) Decision support systems in agriculture, food and the environment: trends, applications and advances. IGI Global, Hershey, pp 437–449. ISBN 978-1-61520-881-4CrossRefGoogle Scholar
  35. Silvertown J, Charlesworth D (2001) Introduction to plant population biology. Blackwell Science, New YorkGoogle Scholar
  36. Sinnett D, Morgan G, Williaws M, Hutchings TR (2008) Soil penetration resistance and tree root development. Soil Use Manag 24:273–280. doi: 10.1111/j.1475-2743.2008.00164.x CrossRefGoogle Scholar
  37. Souch CA, Martin PJ, Stephens W, Spoor G (2004) Effects of soil compaction and mechanical damage at harvest on growth and biomass production of short rotation coppice willow. Plant Soil 263:173–182. doi: 10.1023/B:PLSO.0000047734.91437.26 CrossRefGoogle Scholar
  38. Surový P, Ribeiro N, Brasil F, Pereira JS, Oliveira MRO (2011) Method for evaluation of coarse cork oak root system by means of digital imaging. Agrofor Syst 82(2):111–119CrossRefGoogle Scholar
  39. Tsakaldimi M, Zagas T, Tsitsoni T, Ganatsas P (2005) Root morphology, stem growth and field performance of seedlings of two Mediterranean evergreen oak species raised in different container types. Plant Soil 278:85–93. doi: 10.1007/s11104-005-2580-1 CrossRefGoogle Scholar
  40. Tubeileh A, Groleau-Renaud V, Plantureux S, Gucker A (2003) Effect of soil compaction on photosynthesis and carbon partitioning within a maize–soil system. Soil Till Res 71:151–161. doi: 10.1016/S0167-1987(03)00061-8 CrossRefGoogle Scholar
  41. Villar-Salvador P, Planelles R, Enriquez E, Penuelas J (2004) Nursery cultivation regimes, plant functional attributes, and field performance relationships in the Mediterranean oak Quercus ilex L. For Ecol Manag 196:257–266. doi: 10.1016/j.foreco.2004.02.061     CrossRefGoogle Scholar
  42. Whalley WR, Dumitrub E, Dexter AR (1995) Biological effects of soil compaction. Soil Till Res 35:53–68Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Cati Dinis
    • 1
  • Peter Surový
    • 2
  • Nuno Ribeiro
    • 1
  • Maria R. G. Oliveira
    • 1
  1. 1.Institute of Mediterranean Agricultural and Environmental Sciences (ICAAM)Universidade de Évora - Pólo Da MitraÉvoraPortugal
  2. 2.Department of Forest Management, Forestry FacultyCzech University of Life SciencesPraha 6, SuchdolCzech Republic

Personalised recommendations