New Forests

, Volume 45, Issue 6, pp 875–891 | Cite as

Comparing large containerized and bareroot conifer stock on sites of contrasting vegetation composition in a non-herbicide scenario

  • Nelson ThiffaultEmail author
  • Robert Jobidon
  • Alison D. Munson


Planting stock selection is an integral part of plantation management, as forest nursery practices influence the physiological status of the seedlings and their capacity to cope with resource availability on different planting sites. We thus compared the 11th-year dimensions and survival of large white spruce (Picea glauca) and black spruce (P. mariana) seedlings produced as 2 + 2 bareroot or 2 + 0 container stock (cell volume of 350 cm3), used to reduce the need for competition control. Using complete split-block designs, we evaluated the seedling competitive potential and response to mechanical release on two sites of contrasting ecological fertility and vegetation dominance in Quebec, Canada. We found that large spruce seedlings can be successfully established on high-competition sites in a context where chemical herbicides cannot be used. These stock types had a limited impact on survival and growth, and both stock responded similarly to mechanical vegetation control. In this context, the choice of stock type should prioritize the highest quality large seedling based on operational considerations such as availability and ease of transportation. Mechanical site preparation was not necessary to promote seedling growth and survival on these sub-boreal sites.


Reforestation Vegetation management Stock type Foliar nutrition Plantation Herbicide alternative 



We thank Jacques Carignan, Réjean Poliquin, Steve Lemay, Evelyne Gaillard, Dominic Létourneau, and several summer students for their technical help over the course of this project. We acknowledge the contribution of David Emond, Marie-Pier Labrie and Adréanne Moisan-Roy who conducted some of the statistical analyses. We are indebted to the staff of the Laboratoire de chimie organique et inorganique of the Ministère des Forêts, de la Faune et des Parcs du Québec (MFFPQ) for performing the chemical analyses. We also thank the Associate Editor and two anonymous reviewers who provided constructive comments on earlier versions of the manuscript. This study is part of project 112310031 of the Direction de la recherche forestière, MFFPQ.


  1. Balandier P, Collet C, Miller JH, Reynolds PE, Zedaker SM (2006) Designing forest vegetation management strategies based on the mechanisms and dynamics of crop tree competition by neighbouring vegetation. Forestry 79(1):3–27. doi: 10.1093/forestry/cpi056 CrossRefGoogle Scholar
  2. Beaudet M, Cauboue M, Thiffault N, Cartier P, Martineau P, Boulet B (2013) L’autécologie des espèces concurrentes. In: Boulet B, Huot M (eds) Le guide sylvicole du Québec. Tome 1. Les fondements biologiques de la sylviculture. Les Publications du Québec, Québec, QC, pp 180–279Google Scholar
  3. Bell FW, Kershaw HM, Aubin I, Thiffault N, Dacosta J, Wiensczyk A (2011) Ecology and traits of plant species that compete with boreal and temperate forest conifers: an overview of available information and its use in forest management in Canada. For Chron 87(2):161–174. doi: 10.5558/tfc2011-006 CrossRefGoogle Scholar
  4. Boateng JO, Heineman JL, Bedford L, Linnell Nemec AF, McClarnon J, Allan Powelson R (2011) Twenty year site preparation effects on sub-boreal lodgepole pine performance. New For 43(4):457–472. doi: 10.1007/s11056-011-9292-6 CrossRefGoogle Scholar
  5. Brand DG (1991) The establishment of boreal and sub-boreal conifer plantations: an integrated analysis of environmental conditions and seedling growth. For Sci 37(1):68–100Google Scholar
  6. Burdett AN (1990) Physiological processes in plantation establishment and the development of specifications for forest planting stock. Can J For Res 20(4):415–427. doi: 10.1139/x90-059 CrossRefGoogle Scholar
  7. Crane MF (1990) Pteridium aquilinum. In: Fire effects information system. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. Accessed 24 Jan 2014
  8. DeHayes DH, Schaberg PG, Hawley GJ, Strimbeck GR (1999) Acid rain impacts on calcium nutrition and forest health. Bioscience 49(10):789–800. doi: 10.2307/1313570 CrossRefGoogle Scholar
  9. Gingras BM, Richard S (1999) Bilan du développement des récipients à parois ajourés: culture des semis en pépinière et performance en plantation comparative. Mémoire de recherche forestière 130. Ministère des Ressources naturelles, Direction de la recherche forestière, Québec, QCGoogle Scholar
  10. Graber RE, Thompson DF (1978) Seeds in the organic layers and soil of four beech-birch-maple stands. USDA Forest Service, Broomall, PAGoogle Scholar
  11. Grossnickle SC (2005) Importance of root growth in overcoming planting stress. New For 30(2):273–294CrossRefGoogle Scholar
  12. Grossnickle SC (2012) Why seedlings survive: influence of plant attributes. New For 43(5–6):711–738. doi: 10.1007/s11056-012-9336-6 CrossRefGoogle Scholar
  13. Gucker CL (2005) Galium aparine. In: Fire effects information system. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. Accessed 24 Jan 2014
  14. Hart SA, Chen HYH (2006) Understory vegetation dynamics of North American boreal forests. Crit Rev Plant Sci 25(4):381–397. doi: 10.1080/07352680600819286 CrossRefGoogle Scholar
  15. Jobidon R (1994) Light threshold for optimal black spruce (Picea mariana) seedling growth and development under brush competition. Can J For Res 24(8):1629–1635. doi: 10.1139/x94-211 CrossRefGoogle Scholar
  16. Jobidon R, Charette L (1997) Effets, après 10 ans, du dégagement manuel simple ou répété et de la période de coupe de la végétation de compétition sur la croissance de l’épinette noire en plantation. Can J For Res 27(12):1979–1991. doi: 10.1139/x97-166 CrossRefGoogle Scholar
  17. Jobidon R, Roy V, Cyr G (2003) Net effect of competing vegetation on selected environmental conditions and performance of four spruce seedling stock sizes after eight years in Québec (Canada). Ann For Sci 60(7):691–699. doi: 10.1051/forest:2003063 CrossRefGoogle Scholar
  18. Johansson K, Nilsson U, Allen HL (2007) Interactions between soil scarification and Norway spruce seedling types. New For 33(1):13–27. doi: 10.1007/s11056-006-9010-y CrossRefGoogle Scholar
  19. Keddy P, Nielsen K, Weiher E, Lawson R (2002) Relative competitive performance of 63 species of terrestrial herbaceous plants. J Veg Sci 13(1):5–16. doi: 10.1111/j.1654-1103.2002.tb02018.x CrossRefGoogle Scholar
  20. Khattree R, Naik DN (2000) Multivariate data reduction and discrimination with SAS® software. SAS Institute Inc., Cary, NCGoogle Scholar
  21. Landis TD, Dumroese RK, Haase DL (2010) The container tree nursery manual, vol 7, seedling processing, storage, and outplanting. U.S. Department of Agriculture Forest Service, Washington, DCGoogle Scholar
  22. Lanner RM (1985) On the insensitivity of height growth to spacing. For Ecol Manag 13(3–4):143–148. doi: 10.1016/0378-1127(85)90030-1 CrossRefGoogle Scholar
  23. Li GL, Liu Y, Zhu Y, Yang J, Sun HY, Jia ZK, Ma LY (2011) Influence of initial age and size on the field performance of Larix olgensis seedlings. New For 42(2):215–226. doi: 10.1007/s11056-011-9248-x CrossRefGoogle Scholar
  24. Löf M, Dey DC, Navarro RM, Jacobs DF (2012) Mechanical site preparation for forest restoration. New For 43(5–6):825–848. doi: 10.1007/s11056-012-9332-x CrossRefGoogle Scholar
  25. McDonald PM (1991) Container seedlings outperform barefoot stock: survival and growth after 10 years. New For 5(2):147–156CrossRefGoogle Scholar
  26. Mohammed GH, McLeod GR, Menes PA, Timmer VR (2001) A comparison of bareroot and container stock. In: Wagner RG, Columbo SJ (eds) Regenerating the Canadian forest: principles and practices for Ontario. Fitzhenry & Whiteside, Markham, ON, pp 343–348Google Scholar
  27. Newton M, Cole EC, White DE (1993) Tall planting stock for enhanced growth and domination of brush in the Douglas-fir region. New For 7(2):107–121. doi: 10.1007/BF00034194 CrossRefGoogle Scholar
  28. O’Donovan JT, Sharma MP (1987) The biology of Canadian weeds. 78. Galeopsis tetrahit L. Can J Plant Sci 67(3):787–796. doi: 10.4141/cjps87-106 CrossRefGoogle Scholar
  29. Ouimet R, Duchesne L, Houle D, Arp PA (2001) Critical loads and exceedances of acid deposition and associated forest growth in the northern hardwood and boreal coniferous forests in Québec, Canada. Water Air Soil Pollut Focus 1(1–2):119–134. doi: 10.1023/A:1011544325004 CrossRefGoogle Scholar
  30. Ouimet R, Moore J-D, Duchesne L, Camiré C (2013) Etiology of a recent white spruce decline: role of potassium deficiency, past disturbances, and climate change. Can J For Res 43(1):66–77. doi: 10.1139/cjfr-2012-0344 CrossRefGoogle Scholar
  31. Paquette A, Messier C (2010) The role of plantations in managing the world’s forests in the Anthropocene. Front Ecol Environ 8(1):27–34. doi: 10.1890/080116 CrossRefGoogle Scholar
  32. Parent LE, Dafir M (1992) A theoretical concept of compositional nutrient diagnosis. J Am Soc Hort Sci 117(2):239–242Google Scholar
  33. Parkinson JA, Allen SE (1975) A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun Soil Sci Plant Anal 6(1):1–11. doi: 10.1080/00103627509366539 CrossRefGoogle Scholar
  34. Pinto JR, Dumroese RK, Davis AS, Landis TD (2011a) Conducting seedling stocktype trials: a new approach to an old question. J For 109(5):293–299Google Scholar
  35. Pinto JR, Marshall JD, Dumroese RK, Davis AS, Cobos DR (2011b) Establishment and growth of container seedlings for reforestation: a function of stocktype and edaphic conditions. For Ecol Manag 261(11):1876–1884. doi: 10.1016/j.foreco.2011.02.010 CrossRefGoogle Scholar
  36. Pitt DG, Morneault AE, Bunce P, Bell FW (2000) Five years of vegetation succession following vegetation management treatments in a jack pine ecosystem. North J Appl For 17(3):100–109Google Scholar
  37. Prégent G, Bertrand V, Charette L (1996) Tables préliminaires de rendement pour les plantations d’Épinette noire au Québec. Mémoire de recherche forestière 118. Ministère des Ressources naturelles, Direction de la recherche forestière, Québec, QCGoogle Scholar
  38. Prégent G, Picher G, Auger I (2010) Tarif de cubage, tables de rendement et modèles de croissance pour les plantations d’épinette blanche au Québec. Mémoire de recherche forestière 160. Ministère des Ressources naturelles et de la Faune, Direction de la recherche forestière, Québec, QCGoogle Scholar
  39. Prévost M (1992) Effets du scarifiage sur les propriétés du sol, la croissance des semis et la compétition : revue des connaissances actuelles et perspectives de recherches au Québec. Ann Sci For 49(3):277–296. doi: 10.1051/forest:19920306 CrossRefGoogle Scholar
  40. Quesnel P-O, Côté B (2009) Prevalence of phosphorus, potassium, and calcium limitations in white spruce across Canada. J Plant Nutr 32(8):1290–1305. doi: 10.1080/01904160903006002 CrossRefGoogle Scholar
  41. Quesnel P-O, Côté B, Fyles JW, Munson AD (2006a) Optimum nutrient concentrations and CND scores of mature white spruce determined using a boundary-line approach and spatial variation of tree growth and nutrition. J Plant Nutr 29:1999–2018CrossRefGoogle Scholar
  42. Quesnel P-O, Côté B, Fyles JW, Munson AD (2006b) Optimum nutrient concentrations and CND scores of mature white spruce determined using a boundary-line approach and spatial variation of tree growth and nutrition. J Plant Nutr 29(11):1999–2018. doi: 10.1080/01904160600928177 CrossRefGoogle Scholar
  43. Saucier JP, Robitaille A, Grondin P (2009) Cadre bioclimatique du Québec. In: Écologie forestière. Manuel de foresterie, 2nd ed. Ordre des ingénieurs forestiers du Québec. Éditions Multimondes, Québec, Qc, pp 186–205Google Scholar
  44. Schaalje GB, McBride JB, Fellingham GW (2001) Approximations to distributions of test statistics in complex mixed linear models using SAS® Proc MIXED. Paper 262-26. In: SAS Institute Inc. Cary, NC (ed) Twenty-sixth annual SAS®. Users Group International Conference, Long Beach, CAGoogle Scholar
  45. Schaberg PG, DeHayes DH, Hawley GJ (2001) Anthropogenic calcium depletion: a unique threat to forest ecosystem health? Ecosyst Health 7(4):214–228. doi: 10.1046/j.1526-0992.2001.01046.x CrossRefGoogle Scholar
  46. Scherbatskoy T, Klein RM (1983) Response of spruce and birch foliage to leaching by acidic mists. J Environ Qual 12(2):189–195. doi: 10.2134/jeq1983.00472425001200020008x CrossRefGoogle Scholar
  47. Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274(5294):1900–1902. doi: 10.1126/science.274.5294.1900 PubMedCrossRefGoogle Scholar
  48. Soil Classification Working Group (1998) The Canadian System of Soil Classification, 3rd edn. Agriculture and Agri-Food Canada, Ottawa, ONGoogle Scholar
  49. Steel RGD, Torrie JH, Dickey DA (1997) Principles and procedures of statistics. A biometrical approach, 3rd edn. WCB/McGraw-Hill, Boston, MAGoogle Scholar
  50. Thiffault N (2004) Stock type in intensive silviculture: a (short) discussion about roots and size. For Chron 80(4):463–468. doi: 10.5558/tfc80463-4 CrossRefGoogle Scholar
  51. Thiffault N (2010) Stabilité mécanique et caractéristiques racinaires de plants de fortes dimensions de Picea mariana produits en récipients ou à racines nues. For Chron 86(4):469–476CrossRefGoogle Scholar
  52. Thiffault N, Roy V (2011) Living without herbicides in Québec (Canada): historical context, current strategy, research and challenges in forest vegetation management. Eur J For Res 130(1):117–133CrossRefGoogle Scholar
  53. Thiffault N, Jobidon R, Munson AD (2003) Performance and physiology of large containerized and bare-root spruce seedlings in relation to scarification and competition in Québec (Canada). Ann For Sci 60(7):645–655CrossRefGoogle Scholar
  54. Thiffault N, Hébert F, Jobidon R (2012a) Planted Picea mariana growth and nutrition as influenced by silviculture × nursery interactions on an ericaceous-dominated site. Silva Fenn 46:667–682CrossRefGoogle Scholar
  55. Thiffault N, Lafleur B, Roy V, DeBlois J (2012b) Large planting stock type and mechanical release effects on the establishment success of Picea glauca plantations in Quebec, Canada. Int J For Res. doi: 10.1155/2012/617392
  56. Thiffault N, Chalifour D, Bélanger L (2013) Enrichment planting of Picea glauca in boreal mixedwoods: can localized site preparation enhance early seedling survival and growth? New For 44(4):533–546. doi: 10.1007/s11056-012-9361-5 CrossRefGoogle Scholar
  57. Végiard S, Ung C-H (1993) Statistical inference problems related to the logarithmic transformation in regression: another method for interval estimation. Can J For Res 23(5):871–872. doi: 10.1139/x93-114 CrossRefGoogle Scholar
  58. Youngblood A, Cole EC, Newton M (2011) Survival and growth response of white spruce stock types to site preparation in Alaska. Can J For Res 41(4):793–809. doi: 10.1139/X11-001 CrossRefGoogle Scholar
  59. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. doi: 10.1146/annurev.arplant.53.091401.143329 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Crown Copyright as represented by the Ministère des Forets, de la Fane et des Parcs du Québec 2014

Authors and Affiliations

  • Nelson Thiffault
    • 1
    • 2
    Email author
  • Robert Jobidon
    • 1
  • Alison D. Munson
    • 2
  1. 1.Direction de la recherche forestière, Ministère des Forêtsde la Faune et des Parcs du QuébecQuébecCanada
  2. 2.Centre d’étude de la forêt, Faculté de foresterie, de géographie et de géomatiqueUniversité LavalQuébecCanada

Personalised recommendations