New Forests

, Volume 44, Issue 5, pp 649–669 | Cite as

Nutrient loading of forest tree seedlings to promote stress resistance and field performance: a Mediterranean perspective

  • Juan A. OlietEmail author
  • Jaime Puértolas
  • Rosa Planelles
  • Douglass F. Jacobs


The planting environment of Mediterranean areas is highly challenging as summer drought and winter frost jeopardize survival, and soil infertility limits establishment success. We review the potential for seedling nutrient loading to alleviate these post-planting stresses. A growing body of evidence indicates that nitrogen (N) rich seedlings have improved field performance in Mediterranean environments, due to their ability to grow new roots rapidly and out-compete weeds. In addition, frost resistance during hardening is crucial for relatively cold inland nurseries; recent research shows a positive relationship between N and shoot frost resistance though a knowledge gap exists regarding the influence of nutrition on root frost resistance. Some new evidence also implicates phosphorus as an important driver of seedling response in the Mediterranean due to its influence on root growth and physiology. Nutrient status influences other functional attributes critical to survival in Mediterranean areas, such as drought tolerance, root hydraulic conductivity, and mycorrhization. In light of the apparent benefits of high nutrient reserves for seedling performance in Mediterranean areas, we also review techniques for nursery nutrient loading. Exponential fertilization can be applied when species’ growth patterns match this application regime. However, many Mediterranean species exhibit episodic growth indicating that constant or fall fertilization could be more effective in reaching loading. In particular, late-season fertilization has shown good potential to avert nutrient dilution in the fall and increase frost resistance. Several needs for future research are identified, with special emphasis on the necessity to match fertilization regimes to species ecological traits and planting conditions.


Plant nutrition Drought avoidance Frost resistance Fertilization Mediterranean environment 



This paper synthesizes results from projects sponsored by multiple funding sources including the Spanish Ministry of Science and Innovation (through Projects OT98-001, AGL2006-12609 Encinut and AGL2011-24296 Ecolpin), the Andalusia Department of Science and Innovation (AGR-6501), Regional Government of Madrid (S2009/AMB-1668), National Institute of Agricultural Research and Polytechnic of Madrid and Cordoba Universities Research Programs. We wish to thank the colleagues with whom we have collaborated on research cited in this review, particularly Francisco Artero, Mari Luz Segura, Pedro Villar-Salvador, and Manuel Fernández. We also thank the organizing committee of the IUFRO Symposium, ‘Nutrient Dynamics of Planted Forests’ for the opportunity to participate.


  1. Agencia Estatal de Meteorología, Instituto de Meteorología de Portugal (2011) Atlas Climático Ibérico. Ministerio de Medio Ambiente, Medio Rural y Marino, MadridGoogle Scholar
  2. Andivia E, Fernández M, Vázque-Piqué J (2011) Autumn fertilization of Quercus ilex ssp. ballota (Desf.) Samp. nursery seedlings: effects on morpho-physiology and field performance. Ann For Sci 68:543–553Google Scholar
  3. Andivia E, Fernández M, Vázque-Piqué J, Alejano R (2012a) Two provenances of Quercus ilex ssp. ballota (Desf) Samp. nursery seedlings have different response to frost tolerance and autumn fertilization. Eur J For Res 131:1091–1101Google Scholar
  4. Andivia E, Marquez-García B, Vázquez-Piqué J, Córdoba F, Fernández M (2012b) Autumn fertilization with nitrogen improves nutritional status, cold hardiness and oxidative stress response of Holm oak (Quercus ilex ssp. ballota (Desf.) Samp.) nursery seedlings. Trees 26:311–320Google Scholar
  5. Baquedano FJ, Castillo FJ (2006) Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercus ilex. Trees 20:689–700Google Scholar
  6. Bi G, Scagel CF (2008) Nitrogen uptake and mobilization by Hydrangea leaves from foliar-sprayed urea in fall depend on plant nitrogen status. HortScience 43:2151–2154Google Scholar
  7. Bigras FJ (1997) Root cold tolerance of black spruce seedlings: viability tests in relation to survival and growth. Tree Physiol 17:311–318PubMedGoogle Scholar
  8. Bigras FJ, Gonzalez A, D’Aoust AL, Hébert C (1996) Frost hardiness, bud phenology, and growth of containerized Picea mariana seedlings grown at three nitrogen levels and three temperature regimes. New For 12:243–259Google Scholar
  9. Bigras FJ, Ryyppö A, Lindström A, Stattin E (2001) Cold acclimation and deacclimation of shoots and roots of conifer seedlings. In: Bigras FJ, Colombo SJ (eds) Conifer cold hardiness. Kluwer Academic Publishers, The Netherlands, pp 57–88Google Scholar
  10. Birge ZKD, Salifu KF, Jacobs DF (2006) Modified exponential nitrogen loading to promote morphological quality and nutrient storage of bareroot-cultured Quercus rubra and Quercus alba seedlings. Scand J For Res 21:306–316Google Scholar
  11. Borghetti M, Cinnirella S, Magnani F, Saracino A (1998) Impact of long-term drought on xylem embolism and growth in Pinus halepensis Mill. Trees 12:187–195Google Scholar
  12. Bucio JL, Abreu EH, Calderón LS, Jacobo MF, Simpson J, Estrella LH (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256Google Scholar
  13. Burgess D (1991) Western hemlock and Douglas-fir seedling development with exponential rates of nutrient addition. For Sci 37:54–67Google Scholar
  14. Burney O, Jacobs DF (2013) Ungulate herbivory of boreal and temperate forest regeneration in relation to seedling mineral nutrition and secondary metabolites. New For. doi: 10.1007/s11056-013-9381-9
  15. Carrasco I, Peñuelas JL, Domínguez-Lerena S, Benito LF (2004) Comparación de distintos métodos y dosis de fertilización en plantas de Pinus nigra y Pinus sylvestris cultivadas en contenedor. Cuadernos de la Sociedad Española de Ciencias Forestales 17:29–33Google Scholar
  16. Christensen JH, Busuioc HBA, Chen A, Gao X, Held I, Jones R, Koll RK, Kwon WT, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  17. Close DC (2012) A review of ecophysiologically-based seedling specifications for temperate Australian Eucalypt plantations. New For 43:739–753Google Scholar
  18. Close DC, Beadle CL (2004) Total, and chemical fractions, of nitrogen and phosphorus in Eucalyptus seedlings leaves: effects of species, nursery fertilizer management and transplanting. Plant Soil 259:85–95Google Scholar
  19. Close DC, Bailc I, Hunterd S, Beadleb CL (2005) Effects of exponential nutrient-loading on morphological and nitrogen characteristics and on after-planting performance of Eucalyptus globulus seedlings. For Ecol Manage 205:397–403Google Scholar
  20. Colombo SJ, Menzies MI, O’reilly C (2001) Influence of nursery cultural practices on cold hardiness of coniferous forest tree seedlings. In: Bigras FJ, Colombo SJ (eds) Conifer cold hardiness. Kluwer Academic Publishers, The Netherlands, pp 223–252Google Scholar
  21. Cortina J, Peñuelas JL, Puértolas J, Savé J, Vilagrosa A (Coords) (2006) Calidad de planta forestal para la restauración en ambientes mediterráneos degradados. Estado actual de conocimientos. Organismo Autónomo Parques Nacionales. Ministerio de Medio Ambiente, MadridGoogle Scholar
  22. Cortina J, Bellot J, Vilagrosa A, Caturla R, Maestre F, Rubio E, Martínez JM, Bonet A (2004) Restauración en semiárido. In: Vallejo VR, Alloza JA (eds) Avances en el Estudio de la Gestión del Monte Mediterráneo. Fundación CEAM, Valencia, pp 345–406Google Scholar
  23. Cortina J, Vilagrosa A, Trubat R (2013) The role of nutrients for improving seedling quality in drylands. New For. doi: 10.1007/s11056-013-9379-3
  24. Cuesta B, Villar-Salvador P, Puértolas J, Jacobs DF, Rey Benayas JM (2010) Why do large, nitrogen rich seedlings better resist stressful transplanting conditions? A physiological analysis in two functionally contrasting Mediterranean forest species. For Ecol Manage 260:71–78Google Scholar
  25. Dehayes DH, Ingle MA, Waite CE (1989) Nitrogen fertilization enhances cold tolerance of red spruce seedlings. Can J For Res 19:1037–1043Google Scholar
  26. Del Campo A, Navarro RM, Hermoso J, Ibáñez AJ (2007) Relationships between site and stock quality in Pinus halepensis Mill. reforestation on semiarid landscapes in eastern Spain. Ann For Sci 6:719–731Google Scholar
  27. Del Campo AD, Navarro RM, Ceacero CJ (2010) Seedling quality and field performance of commercial stocklots of containerized holm oak (Quercus ilex) in Mediterranean Spain: an approach for establishing a quality standard. New For 39:19–37Google Scholar
  28. Díaz G, Carrillo C, Honrubia M (2010) Mycorrhization, growth and nutrition of Pinus halepensis seedlings fertilized with different doses and sources of nitrogen. Ann For Sci 67:405–415Google Scholar
  29. Dumroese RK, Page-Dumroese DS, Salifu KF, Jacobs DF (2005) Exponential fertilization of Pinus monticola seedlings: nutrient uptake efficiency, leaching fractions, and early outplanting performance. Can J For Res 35:2961–2967Google Scholar
  30. Duryea ML (1985) Evaluating seedling quality: importance to reforestation. In: Duryea ML (ed) Evaluating seedling quality: principles, procedures and predictive abilities of major test. Forest Research Labaratory, Oregon State University, Corvallis, OR, pp 1–6Google Scholar
  31. Everett KT, Hawkins BJ, Kiiskila S (2007) Growth and nutrient dynamics of Douglas-fir seedlings raised with exponential or conventional fertilization and planted with or without fertilizer. Can J For Res 37:2552–2562Google Scholar
  32. Fageria NK, Barbosa Filho MP, Moreira A, Guimaraes CM (2009) Foliar fertilization of crop plants. J Plant Nutr 32:1044–1064Google Scholar
  33. Fernández M, Marcos C, Tapias R, Ruiz F, López G (2007) Nursery fertilization affects the frost-tolerance and plant quality of Eucalyptus globulus Labill. cuttings. Ann For Sci 64:865–873Google Scholar
  34. Fernández M, Alejano R, Domínguez L, Tapias R (2008) Temperature controls cold hardening more effectively than photoperiod in four Mediterranean broadleaf evergreen species. Tree For Sci Biotechnol 2(1):43–49Google Scholar
  35. Folk RS, Grossnickle S (2000) Stock-type patterns of phosphorus uptake, retranslocation, net photosynthesis and morphological development in interior spruce seedlings. New For 19:27–49Google Scholar
  36. Gómez-Aparicio L, Valladares F, Zamora R (2006) Differential light responses of Mediterranean tree saplings: linking ecophysiology with regeneration niche in four co-occurring species. Tree Physiol 26:947–956PubMedGoogle Scholar
  37. Grossnickle SC (2005) Importance of root growth in overcoming planting stress. New For 30:273–294Google Scholar
  38. Grossnickle SC (2012) Why seedlings survive: influence of plant attributes. New For 43:711–738Google Scholar
  39. Haase DL, Rose R, Trobaugh J (2006) Field performance of three stock sizes of Douglas-fir container seedlings grown with slow-release fertilizer in the nursery growing medium. New For 31:1–24Google Scholar
  40. Hawkins BJ, Burgess D, Mitchell AK (2005) Growth and nutrient dynamics of western hemlock with conventional or exponential greenhouse fertilization and planting in different fertility conditions. Can J For Res 35:1002–1016Google Scholar
  41. Hernández EI, Vilagrosa A, Luis VC, Llorca M, Chirino E, Vallejo VR (2009) Root hydraulic conductance, gas exchange and leaf water potential in seedlings of Pistacia lentiscus L. and Quercus suber L. grown under different fertilization and light regimes. Environ Exp Bot 67:269–276Google Scholar
  42. Herrera CM (1992) Historical effects and sorting processes as explanations for contemporary ecological patterns: character syndromes in Mediterranean woody plants. Am Nat 140:421–446Google Scholar
  43. Imo M, Timmer VR (1992) Nitrogen uptake of mesquite seedlings at conventional and exponential fertilization schedules. Soil Sci Soc Am J 56:927–934Google Scholar
  44. Ingestad T, Lund AB (1986) Theory and techniques for steady state mineral nutrition and growth of plants. Scand J For Res 1:439–453Google Scholar
  45. Jacobs DF, Timmer VR (2005) Fertilizer-induced changes in rhizosphere electrical conductivity: relation to forest tree seedling root system growth and function. New For 30:147–166Google Scholar
  46. Kostopolou P, Radoglou K, Dini-Papanastasi O (2011) Performance and quality of Cupressus sempervirens L. mini-plug seedlings under reduced photoperiod. Eur J For Res 130:579–588Google Scholar
  47. Kreyling J, Wiesenberg GLB, Thiel D, Wohlfart C, Huber G, Walter J, Jentsch A, Konnert M, Beierkuhnlein C (2012) Cold hardiness of Pinus nigra Arnold as influenced by geographic origin, warming, and extreme summer drought. Environ Exp Bot 78:99–108Google Scholar
  48. Lambers H, Chapin FS, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New YorkGoogle Scholar
  49. Landis TD (1985) Mineral nutrition as an index of seedling quality. In: Dureya ML (ed) Evaluating seedling quality: principles, procedures, and predictive abilities of major tests. Forest Research Laboratory, Oregon State University, Corvallis, OR, pp 29–48Google Scholar
  50. Landis TD, Van Steenis E (2004) Macronutrients: phosphorus. In: Dumroese RK, Landis T (eds) Forest nursery notes. USDA Forest Service. R6-CP-TP-07-04, pp 6–14Google Scholar
  51. Luis VC, Puértolas J, Climent J, Peters J, González-Rodríguez AM, Morales D, Jiménez MS (2009) Nursery fertilization enhances survival and physiological status in Canary Island pine (Pinus canariensis) seedlings planted in a semiarid environment. Eur J For Res 128:221–229Google Scholar
  52. Luis VC, Llorca M, Chirino E, Hernández EI, Vilagrosa A (2010) Differences in morphology, gas exchange and root hydraulic conductance before planting in Pinus canariensis seedlings growing under different fertilization and light regimes. Trees Struct Funct 24:1143–1150Google Scholar
  53. Malik V, Timmer VR (1998) Biomass partitioning and nitrogen retranslocation in black spruce seedlings on competitive mixewood sites: a bioassay study. Can J For Res 28:206–215Google Scholar
  54. Martínez-Mena M, Alvarez-Rogel J, Castillo V, Albaladejo J (2002) Organic carbon and nitrogen losses influenced by vegetation removal in a semiarid Mediterranean soil. Biogeochemistry 61:309–321Google Scholar
  55. Mason PA, Ingleby K, Munro RC, Wilson J, Ibrahim K (2000) Interactions on nitrogen and phosphorous on mycorrhizal development and shoot growth of Eucalyptus globulus (Labill.) seedlings inoculated with two different ectomycorrhizal fungi. For Ecol Manage 128:259–268Google Scholar
  56. Millard P, Grelet G (2010) Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol 30:1083–1095PubMedGoogle Scholar
  57. Mollá S, Villar-Salvador P, García-Fayos P, Peñuelas Rubira JL (2006) Physiological and transplanting performance of Quercus ilex L. (holm oak) seedlings grown in nurseries with different winter conditions. For Ecol Manage 237:218–226Google Scholar
  58. Oliet J (1995) Influencia de la fertilización en vivero sobre la calidad de la planta y la supervivencia en campo de varias especies forestales. PhD Dissertation, Universidad de Córdoba, CórdobaGoogle Scholar
  59. Oliet JA, Jacobs DF (2012) Restoring forests: advances in techniques and theory. New For 43:535–541Google Scholar
  60. Oliet J, Planelles R, López-Arias M, Artero F (2002) Soil water content and water relations in planted and naturally regenerated Pinus halepensis Mill. Seedlings during the first year in semiarid conditions. New For 23:31–44Google Scholar
  61. Oliet J, Planelles R, Segura ML, Artero F, Jacobs DF (2004) Mineral nutrition and growth of containerized Pinus halepensis seedlings under controlled-release fertilization. Sci Horticult 103(1):113–129Google Scholar
  62. Oliet J, Planelles R, Artero F, Jacobs D (2005) Nursery fertilization and tree shelters affect long-term field response of Acacia salicina Lindl. planted in Mediterranean semiarid conditions. For Ecol Manage 215(1–3):339–351Google Scholar
  63. Oliet JA, Valdecantos A, Puértolas J, Trubat R (2006) Influencia del estado nutricional y el contenido en carbohidratos en el establecimiento de los plantones. In: Cortina J, Peñuelas JL, Puértolas J, Savé J, Vilagrosa A (coords) Calidad de planta forestal para la restauración en ambientes mediterráneos degradados. Estado actual de conocimientos. Organismo Autónomo Parques Nacionales. Ministerio de Medio Ambiente, Madrid, pp 89–117Google Scholar
  64. Oliet J, Tejada M, Salifu F, Collazos A, Jacobs DF (2009a) Performance and nutrient dynamics of holm oak (Quercus ilex L.) seedlings in relation to nursery nutrient loading and post-transplant fertility. Eur J For Res 128:253–263Google Scholar
  65. Oliet JA, Planelles R, Artero F, Valverde R, Jacobs D, Segura ML (2009b) Field performance of Pinus halepensis planted in Mediterranean arid conditions: relative influence of seedling morphology and mineral nutrition. New For 37:313–331Google Scholar
  66. Oliet JA, Salazar JM, Villar R, Robredo E, Valladares F (2011) Fall fertilization of holm oak affects N and P dynamics, root growth potential, and post-planting phenology and growth. Ann For Sci 68:647–656Google Scholar
  67. Oliet JA, Artero F, Cuadros S, Puértolas J, Luna L, Grau JM (2012) Deep planting with shelters improves performance of different stocktype sizes under arid Mediterranean conditions. New For 43:925–939Google Scholar
  68. Oliveras I, Martínez-Vilalta J, Jiménez-Ortiz MT, Lledó MJ, Escarré A, Piñol J (2003) Hydraulic properties of Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of Eastern Spain. Plant Ecol 169:131–141Google Scholar
  69. Padilla FM, Pugnaire FI (2007) Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Funct Ecol 21:489–495Google Scholar
  70. Padilla FM, Ortega R, Sánchez J, Pugnaire F (2009) Rethinking species selection for restoration of arid shurblands. Basic Appl Ecol 10:640–647Google Scholar
  71. Palacios G, Navarro RM, del Campo A, Toral M (2009) Site preparation, stock quality and planting date effect on early establishment of Holm oak (Quercus ilex L.) seedlings. Ecol Eng 35:38–46Google Scholar
  72. Pardos M, Royo A, Gil L, Pardos JA (2003) Effect of nursery location and outplanting date performance of Pinus halepensis and Quercus ilex seedlings. Forestry 76:67–81Google Scholar
  73. Pascual S, Olarieta JR, Rodríguez-Ochoa R (2012) Development of Quercus ilex plantations is related to soil phosphorus availability on shallow calcareous soils. New For 43:805–814Google Scholar
  74. Pigott CD, Pigott S (1993) Water as a determinant of distribution of trees at the boundary of the Mediterranean zone. J Ecol 81:557–566Google Scholar
  75. Planelles R (2004) Efectos de la fertilización N-P-K en vivero sobre la calidad funcional de planta de Ceratonia siliqua L. PhD Dissertation, Universidad Politécnica de Madrid, MadridGoogle Scholar
  76. Puértolas J, Fernandez M, Pardos JA (2000) Effects of improved nursery fertilization in the use of Aleppo pine (Pinus halepensis Mill.) for afforestation of abandoned agricultural land. In: Hasenauer H (ed) Forest ecosystem restoration. Ecological and economics impacts of restoration processes in secondary coniferous forests. Institute of Forest Growth Research, University of Agricultural Sciences, Wien, pp 382–383Google Scholar
  77. Puértolas J, Gil L, Pardos JA (2003) Effects of nutritional status and seedling size on field performance of Pinus halepensis planted on former arable land in the Mediterranean basin. Forestry 76:159–168Google Scholar
  78. Puértolas J, Gil L, Pardos JA (2005) Effects of nitrogen fertilization and temperature on frost hardiness of Aleppo pine (Pinus halepensis Mill.) seedlings assessed by chlorophyll fluorescence. Forestry 78:502–511Google Scholar
  79. Puértolas J, Oliet JA, Jacobs DF, Benito LF, Peñuelas JL (2010) Is light the key factor for success of tube shelters in forest restoration plantings under Mediterranean climates? For Ecol Manage 260:610–617Google Scholar
  80. Puértolas J, Jacobs DF, Benito LF, Peñuelas JL (2012) Cost-benefit analysis of different container capacities and fertilization regimes in Pinus stock-type production for forest restoration in dry Mediterranean areas. Ecol Eng 44:210–215Google Scholar
  81. Querejeta JI, Barberá GG, Granados A, Castillo VM (2008) Afforestation method affects the isotopic composition of planted Pinus halepensis in a semiarid region of Spain. For Ecol Manage 254(1):56–64Google Scholar
  82. Quezel P (1985) Definition of the Mediterranean region and the origin of its flora. In: Gómez-Campo C (ed) Plant conservation in the Mediterranean area. Dr W. Junk Publishers, Dordretch, pp 287–302Google Scholar
  83. Quoreshi M, Timmer VR (2000) Growth, nutrient dynamics, and ectomycorrhizal development of container-grown Picea mariana seedlings in response to exponential nutrient loading. Can J For Res 30:179-190Google Scholar
  84. Repo T, Nilsson JE, Rikala R, Ryyppö A, Sutinen ML (2001) Cold hardiness of Scots Pine (Pinus sylvestris L.) In: Bigras FJ, Colombo SJ (eds) Conifer cold hardiness. Kluwer Academic Publishers, The Netherlands, pp 463–493Google Scholar
  85. Rincón A, Parlade J, Pera J (2007) Influence of the fertilization method in controlled ectomycorrhizal inoculation of two Mediterranean pines. Ann For Sci 64:577–583Google Scholar
  86. Salifu KF, Jacobs DF (2006) Characterizing fertility targets and multi-element interactions in nursery culture of Quercus rubra seedlings. Ann For Sci 63:231–237Google Scholar
  87. Salifu KF, Timmer VR (2003) Optimizing nitrogen loading of Picea mariana seedlings during nursery culture. Can J For Res 33:1287–1294Google Scholar
  88. Salifu KF, Jacobs DF, Birge ZKD (2008a) Nursery nitrogen loading improves field performance of bareroot oak seedlings planted on abandoned mine land. Restor Ecol 17:339–349Google Scholar
  89. Salifu KF, Apostol KG, Jacobs DF, Islam MA (2008b) Growth, physiology, and nutrient retranslocation in nitrogen-15 fertilized Quercus rubra seedlings. Ann For Sci 65:101–109Google Scholar
  90. Sardans J, Peñuelas J, Rodà F (2005) Changes in nutrient use efficiency, status and retranslocation in young post-fire regeneration Pinus halepensis in response to sudden N and P input, irrigation and removal of competing vegetation. Trees 19:233–250Google Scholar
  91. Sardans J, Peñuelas J, Rodà F (2006) Plasticity of leaf morphological traits, leaf nutrient content, and water capture in the Mediterranean evergreen oak Quercus ilex subsp. Ballota in response to fertilization and changes in competitive conditions. EcoScience 13:258–270Google Scholar
  92. Schoene G, Yeager T (2006) Influence of nitrogen application rate on the magnitude of root and shoot growth flushes of Viburnum odoratissimum Ker-Gawl. Plant Soil 284:121–128Google Scholar
  93. Schott KM, Pinno BD, Landhausser SM (2013) Premature shoot growth termination allows nutrient loading of seedlings with an indeterminate growth strategy. New For. doi: 10.1007/s11056-013-9373-9
  94. Sheffield J, Wood E (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105Google Scholar
  95. Silla F, Escudero A (2003) Uptake, demand and internal cycling of nitrogen in saplings of Mediterranean Quercus species. Oecologia 136:28–36PubMedGoogle Scholar
  96. Stattin E, Lindström A (1999) Influence of soil temperature on root freezing tolerance of Scots pine (Pinus sylvestris L.) seedlings. Plant Soil 217:173–181Google Scholar
  97. Thomas FM, Ahlers U (1999) Effects of excess nitrogen on frost hardiness and freezing injury of above-ground tissue in young oaks (Quercus petraea and Q. robur). New Phytol 144:73–83Google Scholar
  98. Timmer VR (1997) Exponential nutrient loading: a new fertilization technique to improve seedling performance on competitive sites. New For 13:279–299Google Scholar
  99. Timmer VR, Aidelbaum AS (1996) Manual for exponential nutrient loading of seedlings to improve outplanting performance on competitive forest sites NODA/NFP Technical Report, TR-25. National Resource Canada, Canadian Forest Service, Sault Ste Marie, ONGoogle Scholar
  100. Trubat R, Cortina J, Vilagrosa A (2008) Short-term nitrogen deprivation increases field performance in nursery seedlings of Mediterranean woody species. J Arid Environ 72:879–890Google Scholar
  101. Trubat R, Cortina J, Vilagrosa A (2010) Nursery fertilization affects seedling traits but not field performance in Quercus suber L. J Arid Environ 74:491–497Google Scholar
  102. Trubat R, Cortina J, Vilagrosa A (2011) Nutrient deprivation improves field performance of woody seedlinngs in a degraded semi-arid shrubland. Ecol Eng 37:1164–1173Google Scholar
  103. Valdecantos A, Cortina J, Vallejo JR (2006) Nutrient status and field performance of tree seedlings planted in Mediterranean degraded areas. Ann For Sci 63:1–8Google Scholar
  104. Valladares F, Gianoli E (2007) How much ecology do we need to know to restore Mediterranean ecosystems? Restor Ecol 15:363–368Google Scholar
  105. Valladares F, Sánchez-Gómez D (2006) Ecophysiological traits associated with drought in Mediterranean tree seedlings: individual responses versus interspecific trends in eleven species. Plant Biol 8:688–697PubMedGoogle Scholar
  106. Valladares F, Villar-Salvador P, Dominguez S, Fernandez-Pascual M, Penuelas JL, Pugnaire FI (2002) Enhancing the early performance of the leguminous shrub Retama sphaerocarpa (L.) Boiss.: fertilisation versus Rhizobium inoculation. Plant Soil 240:253–262Google Scholar
  107. Vallejo RV, Smanis A, Chirino E, Fuentes D, Valdecantos A, Vilagrosa A (2012) Perspectives in dryland restoration: approaches for climate change adaptation. New For 43:561–579Google Scholar
  108. Vilagrosa A, Bellot J, Vallejo VR, Gil-Pelegrín E (2003) Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J Exp Bot 54:2015–2025PubMedGoogle Scholar
  109. Villar-Salvador P, Planelles R, Enriquez E, Peñuelas JL (2004) Nursery cultivation regimes, plant functional attributes, and field performance relationships in the Mediterranean oak Quercus ilex L. For Ecol Man 196:257–266Google Scholar
  110. Villar-Salvador P, Puértolas J, Peñuelas JL, Planelles R (2005) Effect of nitrogen fertilization in the nursery on the drought and frost resistance of Mediterranean forest species. Invest Agrar: Sist Recur For 14:408–418Google Scholar
  111. Villar-Salvador P, Valladares F, Domínguez-Lerena S, Ruiz-Díez B, Fernández-Pascual M, Delgado A, Peñuelas JL (2008) Functional traits related to seedling performance in the Mediterranean leguminous shrub Retama sphaerocarpa: insights from a provenance, fertilization, and rhizobial inoculation study. Env Exp Bot 64:145–154Google Scholar
  112. Villar-Salvador P, Heredia N, Millard P (2009) Remobilization of acorn nitrogen for seedling growth in holm oak (Quercus ilex), cultivated with contrasting nutrient availability. Tree Physiol 30:257–263PubMedGoogle Scholar
  113. Villar-Salvador P, Puértolas J, Cuesta B, Peñuelas JL, Uscola M, Heredia-Guerrero N, Rey-Benayas JM (2012) Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations. Insights from an ecophysiological conceptual model of plant survival. New For 43:755–770Google Scholar
  114. Villar-Salvador P, Peñuelas JL, Jacobs DF (2013) Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. seedlings. Tree Physiol 33:221–232PubMedGoogle Scholar
  115. Warren CR, Mcgrath JF, Adams MA (2005) Differential effects of N, P and K on photosynthesis and partitioning of N in Pinus pinaster needles. Ann For Sci 62:1–8Google Scholar
  116. White PJ, Hammond JP (2008) Phosphorus nutrition of terrestrial plants. In: White PJ, Hammond JP (eds) The ecology of plant–phosphorus interactions. Springer, Berlin, pp 51–81Google Scholar
  117. Zhang K, Greenwood DJ, White PJ, Burns IG (2007) A dynamic model for the combined effects of N, P and K fertilizers on yield and mineral composition; description and experimental test. Plant Soil 298:81–98Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Juan A. Oliet
    • 1
    Email author
  • Jaime Puértolas
    • 2
  • Rosa Planelles
    • 1
  • Douglass F. Jacobs
    • 3
  1. 1.Department of SilvopasciculturaUniversidad Politécnica de MadridMadridSpain
  2. 2.Lancaster Environment CentreLancaster UniversityLancasterUK
  3. 3.Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations