New Forests

, Volume 43, Issue 5–6, pp 925–939 | Cite as

Deep planting with shelters improves performance of different stocktype sizes under arid Mediterranean conditions

  • Juan A. Oliet
  • Francisco Artero
  • Simón Cuadros
  • Jaime Puértolas
  • Lourdes Luna
  • Jose M. Grau


Increasing plant size has been considered a way to improve survival and growth of planted containerized stock under dry conditions. Additionally, deep planting provides advantages to seedlings in dry areas because roots are placed deeper into the soil where there is likely more water available. In this study, we tested the effect of Zizyphus lotus stock size (300, 400 and 1,000 cm3 container volume) and planting depth (0 cm and 15 cm below ground level, shallow and deep, respectively) with shelters in a factorial experiment in the arid coastal flats of Southeastern Spain. In the nursery, total biomass of Z. lotus produced in 1,000 cm3 container volume averaged 219 % of those grown in 300 and 400 cm3, although no significant differences were found in shoot-to-root ratio or nutrient status. Root growth potential (RGP) of plants produced in 1,000 cm3 container (209 mg of new roots dry mass) was significantly higher than those of the two other volumes (63 mg in average), but the ratio shoot mass:RGP did not vary significantly between container volumes. After outplanting, and during the first year, volumetric water content (12–20 cm deep from ground level) averaged 3.9 % higher around the deep- versus shallow- planted treatments. Predawn water potential (ψ pd) of seedlings measured in July of the first year differed significantly among planting depths, with lower values for shallow-planted (−3.3 MPa) than for deep-planted (−2.7 MPa) seedlings. However, predawn water potential did not differ among the three container sizes. Survival 40 months after planting was significantly higher for deep-planted seedlings (58.5 %) than for shallow ones (42.7 %), but no differences appeared for container size. PAR radiation at shoot height within the shelter was lower during winter for deep-planted seedlings than for shallow-planted seedlings, and relative differences among planting depths were reduced in summer. Based on survival results, we concluded that deep planting with seedlings of Z. lotus produced in 300 cm3 container is a very effective way to improve planting success under the arid conditions of our experiment.


Container size Planting depth Zizyphus lotus Shoot-to-root ratio Tree shelters 



We thank to Agriculture Research and Training Centre La Mojonera (Junta de Andalucía, Spain) for the use of the facilities to produce the plants. We gratefully acknowledge the financial support of the University of Córdoba, Andalucía Research Programs and National Institute for Agriculture Research (INIA, Spain) to promote research groups activities. Additionally, this research was partially supported by MEC project Encinut (AGL2006-12609-CO2-01) and co-financed by FEDER funds. The comments of two anonymous reviewers substantially improved the manuscript.


  1. Aphalo P, Rikala R (2003) Field performance of silver-birch planting-stock grown at different spacing in containers of different volume. New For 25:93–108CrossRefGoogle Scholar
  2. Atzmon N, Reuveni O, Riou J (1994) Lateral root formation in pine seedlings. II. The role of assimilates. Trees-Struct Funct 8:273–277CrossRefGoogle Scholar
  3. Bergez JE, Dupraz ZC (2009) Radiation and thermal microclimate in tree shelter. Agric For Meteorol 149(1):179–186CrossRefGoogle Scholar
  4. Chirino E, Vilagrosa A, Hernández EI, Matos A, Vallejo VR (2008) Effects of a deep container on morpho-functional characteristics and root colonization in Quercus suber L. seedlings for reforestation in Mediterranean climate. For Ecol Man 256:779–785CrossRefGoogle Scholar
  5. Close DC, Paterson S, Corkrey R, McArthur C (2010) Influences of seedling size, container type and mammal browsing on establishment of Eucalyptus globulus in plantation forestry. New For 39:105–115CrossRefGoogle Scholar
  6. Cortina J, Amat B, Castillo V, Fuentes D, Maestre FT, Padilla FM, Rojo L (2011) The restoration of vegetation cover in the semi-arid Iberian southeast. J Arid Environ 75:1377–1384CrossRefGoogle Scholar
  7. Cuesta B, Villar-Salvador P, Puértolas J, Jacobs DF, Rey Benayas JM (2010a) Why do large, nitrogen rich seedlings better resist stressful transplanting conditions? A physiological analysis in two functionally contrasting Mediterranean forest species. For Ecol Man 260:71–78CrossRefGoogle Scholar
  8. Cuesta B, Vega J, Villar-Salvador P, Rey Benayas JM (2010b) Root growth dynamics of Aleppo pine (Pinus halepensis Mill.) seedlings in relation to shoot elongation, plant size and tissue nitrogen concentration. Trees-Struct Funct 24:899–908CrossRefGoogle Scholar
  9. del Campo A, Navarro RM, Ceacero C (2010) Seedling quality and field performance of commercial stocklots of containerized holm oak (Quercus ilex) in Mediterranean Spain: an approach for establishing a quality standard. New For 39(1):19–37CrossRefGoogle Scholar
  10. Dominguez-Lerena S, Herrero-Sierra N, Carrasco-Manzano I, Ocaña-Bueno L, Peñuuelas- Rubira JL, Mexal JG (2006) Container characteristics influence Pinus pinea seedling development in the nursery and field. For Ecol Man 221:63–71CrossRefGoogle Scholar
  11. Domínguez-Lerena S, Villar-Salvador P, Fuertes L, Peñuelas JL (2001) ¿Puede la profundidad de plantación afectar a la calidad fisiológica y el desarrollo en campo de los brinzales de Pinus halepensis? Actas III Congreso Forestal Español. Tomo II:49–54Google Scholar
  12. Fitter AH (1985) Functional significance of root morphology and root system architecture. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Special Publication of the British Ecological Society, Num 4, pp 87–106Google Scholar
  13. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63:90–104CrossRefGoogle Scholar
  14. Grossnickle SC (2005) Importance of root growth in overcoming planting stress. New For 30:273–294CrossRefGoogle Scholar
  15. Hainds MJ (2004) Determining the correct planting depth for container-grown longleaf pine seedlings. In: Kristina F Connor (ed) Proceedings for the 12th Biennal Southern silvicultural research conference. USDA Forest Service. Southern Research Station. GTR SRS-71, pp 317–318Google Scholar
  16. Jacobs DF, Salifu KF, Davis AS (2009) Drought susceptibility and recovery of transplanted Quercus rubra seedlings in relation to root system morphology. Ann For Sci 66:504–516CrossRefGoogle Scholar
  17. Lamhamedi MS, Bernier PY, Hébert C (1997) Effect of shoot size on the gas exchange end growth of containerized Picea mariana seedlings under different watering regimes. New For 13(1–3):209–223CrossRefGoogle Scholar
  18. Landis TD (1985) Mineral nutrition as an index of seedling quality. In: Duryea M (ed) Evaluating seedling quality: principles, procedures and predictive abilities of major tests. Forest Research Lab, Oregon State University, Oregon, pp 29–48Google Scholar
  19. Navarro R, Villar-Salvador P, del Campo A (2006) Morfología y establecimiento de los plantones. In: Cortina J, Peñuelas JL, Puértolas J, Savé J, Vilagrosa A (Coords) Calidad de planta forestal para la restauración en ambientes mediterráneos degradados. Estado actual de conocimientos. Organismo Autónomo Parques Nacionales. Ministerio de Medio Ambiente. Madrid, pp 67–88Google Scholar
  20. Oliet J (1995) Influencia de la fertilización en vivero sobre la calidad de la planta y la supervivencia en campo de varias especies forestales. Ph.D. Dissertation, Universidad de CórdobaGoogle Scholar
  21. Oliet J, Planelles R, López-Arias M, Artero F (2002) Soil water content and water relations in planted and naturally regenerated Pinus halepensis Mill. seedlings during the first year in semiarid conditions. New For 23:31–44CrossRefGoogle Scholar
  22. Oliet J, Planelles R, Artero F, Jacobs DF (2005) Nursery fertilization and tree shelters affect long-term field response of Acacia salicina Lindl. planted in Mediterranean semiarid conditions. For Ecol Man 215(1–3):339–351Google Scholar
  23. Oliet J, Planelles R, Artero F, Valverde R, Jacobs DF, Segura ML (2009) Field performance of Pinus halepensis planted in Mediterranean arid conditions: relative influence of seedling morphology and mineral nutrition. New For 37:313–331CrossRefGoogle Scholar
  24. Padilla FM, Pugnaire FI (2006) The role of nurse plants in the restoration of degraded environments. Front Ecol Environ 4(4):196–202CrossRefGoogle Scholar
  25. Padilla FM, Pugnaire FI (2007) Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Functional Ecol 21:489–495CrossRefGoogle Scholar
  26. Padilla FM, Pugnaire FI (2009) Species identity and water availability determine establishment success under the canopy of Retama sphaerocarpa shrubs in a dry environment. Rest Ecol 17(6):900–907CrossRefGoogle Scholar
  27. Padilla FM, Ortega R, Sánchez J, Pugnaire F (2009) Rethinking species selection for restoration of arid shurblands. Basic Appl Ecol 10:640–647CrossRefGoogle Scholar
  28. Pemán J, Peguero-Pina JJ, Valladares F, Gil-Pelegrín E (2010) Evaluation of unventilated treeshelters in the context of Mediterranean climate: insights from a study on Quercus faginea seedlings assessed with a 3D architectural plant model. Ecol Eng 36:517–526CrossRefGoogle Scholar
  29. Pérez A (1989) Proyecto LUCDEME. Mapa de suelos escala 1:100.000. Almería-1045. Ministerio de Agricultura Pesca y Alimentación, ICONA, Consejo Superior de Investigaciones Científicas, MadridGoogle Scholar
  30. Pinto JR, Marshall JD, Dumroese KD, Davis AS, Cobos DR (2011) Establishment and growth of container seedlings for reforestation: a function of stocktype and edaphic conditions. For Ecol Man 261:1879–1884CrossRefGoogle Scholar
  31. Pinto JR, Marshall JD, Dumroese RK, Davis AS, Cobos DR (2012) Photosynthetic response, carbon isotopic composition, survival, and growth of three stock types under water stress enhanced by vegetative competition. Can J For Res 42:333–344CrossRefGoogle Scholar
  32. Puertolas J, Gil L, Pardos JA (2003) Effects of nutritional status and seedling size on field performance of Pinus halepensis planted on former arable land in the Mediterranean basin. Forestry 76(2):159–168CrossRefGoogle Scholar
  33. Puértolas J, Jacobs DF, Benito LF, Peñuelas JL (2012) Cost-benefit analysis of different container capacities and fertilization regimes in Pinus stock-type production for forest restoration in dry Mediterranean areas. Ecol Eng 44:210–215CrossRefGoogle Scholar
  34. Roth BE, Newton M (1996) Survival and growth of Douglas-Fir relating to weeding, fertilization and seed source. Western J Appl For 11(2):62–69Google Scholar
  35. Ruiz de la Torre J (2006) Flora mayor. Organismo Autónomo Parques Nacionales, MadridGoogle Scholar
  36. Sit V (1995) Analyzing ANOVA designs. Biom Info Hand 5 Res Br, B.C. Min. For., Victoria, B.C. Work. Pap. 07/1995Google Scholar
  37. South DB, Mitchel RJ (1999) Determining the “optimum” slash pine seedling size for use with four levels of vegetation management on a flatwood site in Georgia, USA. Can J For Res 29(7):1039–1046CrossRefGoogle Scholar
  38. South DB, Rakestraw JL, Lowerts GA (2001) Early gains from planting large diameter seedlings and intensive management are additive for loblolly pine. New For 22(1–2):97–110CrossRefGoogle Scholar
  39. South DB, Harrisa SW, Barnett JP, Hainds MJ, Gjerstad DH (2005) Effect of container type and seedling size on survival and early height growth of Pinus palustris seedlings in Alabama, USA. For Ecol Man 204(2–3):385–398CrossRefGoogle Scholar
  40. Steel R, Torrie JH (1989) Bioestadística: principios y procedimientos (Segunda edición). Mc Graw Hill, MexicoGoogle Scholar
  41. Tinus RW, Burr KE, Atzmon N, Riov J (2000) Relationships between carbohydrate concentration and root growth potential in coniferous seedlings from three climates during cold hardening and dehardening. Tree Physiol 20:1097–1104PubMedCrossRefGoogle Scholar
  42. Tsakaldimi M, Zagas T, Tsitsoni T, Ganatsas P (2005) Root morphology, stem growth and field performance of seedlings of two Mediterranean evergreen oak species raised in different container types. Plant Soil 278:85–93CrossRefGoogle Scholar
  43. Vallejo R, Alloza JA (1999) The restoration of burned lands: the case of Eastern Spain. In: Vallejo R (ed) Large forest fires. Backhuys, Leiden, pp 91–108Google Scholar
  44. van den Driessche R (1987) Importance of current photosyntate to new root growth in planted conifer seedlings. Can J For Res 17:776–782CrossRefGoogle Scholar
  45. Villar-Salvador P, Planelles R, Enriquez E, Peñuelas JL (2004) Nursery cultivation regimes, plant functional attributes, and field performance relationships in the Mediterranean oak Quercus ilex L. For Ecol Man 196(2–3):257–266CrossRefGoogle Scholar
  46. Villar-Salvador P, Puértolas J, Peñuelas JL, Planelles R (2005) Effect of nitrogen fertilization in the nursery on the drought and frost resistance of Mediterranean forest species. Investigación Agraria. Sistemas y Recursos Forestales 14(3):408–418Google Scholar
  47. Villar-Salvador P, Valladares F, Domínguez-Lerena S, Ruiz-Díez B, Fernández-Pascual M, Delgado A, Peñuelas JL (2008) Functional traits related to seedling performance in the Mediterranean leguminous shrub Retama sphaerocarpa: insights from a provenance, fertilization, and rhizobial inoculation study. Env Exp Bot 64:145–154CrossRefGoogle Scholar
  48. Villar-Salvador P, Puértolas J, Cuesta B, Uscola M, Heredia N, Peñuelas JL, Rey-Benayas JM (2012) A physiological conceptual model for explaining the superior out-planting performance of large and rich nutrient seedlings in Mediterranean environments. New For. doi: 10.1007/s11056-012-9328-6

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Juan A. Oliet
    • 1
  • Francisco Artero
    • 2
  • Simón Cuadros
    • 3
  • Jaime Puértolas
    • 4
  • Lourdes Luna
    • 3
  • Jose M. Grau
    • 2
  1. 1.Department of SilvopascicultureUniversidad Politécnica de MadridMadridSpain
  2. 2.Instituto de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación ForestalMadridSpain
  3. 3.Department of Forest EngineeringUniversidad de CórdobaCórdobaSpain
  4. 4.Lancaster Environment CentreLancaster UniversityLancasterUK

Personalised recommendations