Advertisement

New Forests

, Volume 43, Issue 5–6, pp 805–814 | Cite as

Development of Quercus ilex plantations is related to soil phosphorus availability on shallow calcareous soils

  • S. Pascual
  • J. R. Olarieta
  • R. Rodríguez-Ochoa
Article

Abstract

The objective of this study is to analyse the performance of Quercus ilex plantations established under semiarid conditions on different soils formed on calcareous and gypsiferous parent material. We studied eighteen 300 m2 plots in which 1 year-old seedlings had been planted after subsoiling on the contour. Plots were stratified according to aspect (north and south) and previous land use/parent material: shrubland on limestone (LM-SH), shrubland on gypsum rock (GY-SH), and cropland on colluvium (CO-AG). Soils developed on limestone and colluvium had average rooting depths of 27 and 37 cm, respectively, and mean concentrations of active lime and phosphorus (P) of 130 and 190 mg g−1 and 10 and 19 mg kg−1, respectively. Soils developed on gypsum had a mean rooting depth of 26 cm, and a mean gypsum concentration of 73 %. Height and diameter of trees varied significantly according to parent material/previous land use but not to slope aspect. Mean height and diameter of trees were significantly higher in CO-AG plots than in LM-SH and GY-SH plots. Soil P and depth were the main variables explaining differences in dominant height across all 18 plots. In CO-AG plots mean height was negatively related to soil pH but positively related to soil P concentration. In LM-SH plots, mean diameter and height were negatively related to active lime concentration. This study suggests that soil P is a major determinant of holm oak performance in shallow calcareous soils and highlights the importance of conducting detailed soil studies in order to assess the viability of plantations with this species.

Keywords

Active lime Afforestation Holm oak Mediterranean Semiarid areas Gypsum 

Notes

Acknowledgments

We would like to thank the owners of the plots for their support. Editors and reviewers provided insightful comments on a previous version of this paper.

References

  1. Al Omary A (2011) Effects of aspect and slope position on growth and nutritional status of planted Aleppo pine (Pinus halepensis Mill.) in a degraded land semi-arid areas of Jordan. New For 42(3):285–300Google Scholar
  2. Artieda O, Herrero J, Drohan PJ (2006) Refinement of the differential water loss method for gypsum determination in soils. Soil Sci Soc Am J 70:1932–1935CrossRefGoogle Scholar
  3. Bichard D (1982) Relations entre quelques paramètres édaphiques et la productivité du chêne vert au Luberon. Ecol Medit VIII(4):131–142Google Scholar
  4. Bocio I, Navarro FB, Ripoll MA, Jiménez MN, de Simon E (2004) Holm oak (Quercus rotundifolia Lam.) and Aleppo pine (Pinus halepensis Mill.) response to different soil preparation techniques applied to forestation in abandoned farmland. Ann For Sci 61:171–178CrossRefGoogle Scholar
  5. Bolstad PV, Swift L, Collins F, Régnière J (1998) Measured and predicted air temperatures at basin to regional scales in the southern Appalachian mountains. Agric For Met 91:161–176CrossRefGoogle Scholar
  6. Burylo M, Hudek C, Rey F (2011) Soil reinforcement by the roots of six dominant species on eroded mountainous marly slopes (Southern Alps, France). Catena 84(1–2):70–78CrossRefGoogle Scholar
  7. Canadell J, Vilá M (1992) Variation in tissue element concentrations in Quercus ilex L. over a range of different soils. Vegetatio 99–100:273–282CrossRefGoogle Scholar
  8. Cartan-Son M, Floret C, Galan MJ, Grandjanny M, Le Floc’h E, Maistre M, Perret P, Romane F (1992) Factors affecting radial growth of Quercus ilex L. in a coppice stand in southern France. Vegetatio 99–100:61–68CrossRefGoogle Scholar
  9. Cascales S (2005) Estudio de las influencias del medio en el crecimiento de la encina (Quercus ilex L.) en el término municipal de Ivars de Noguera (Lleida). TFC Dissertation, Universitat de LleidaGoogle Scholar
  10. Castillejo JM, Castelló R, San Cristobal AG, Abad S (2011) Soil-plant relationships along a semiarid gypsum gradient (Rio de Aguas, SE Spain). Plant Ecol 212(8):1287–1297Google Scholar
  11. CBDSA (Comisión del Banco de Datos de Suelos y Aguas) (1983) SINEDARES. Manual para la Descripción Codificada de Suelos en el Campo. Ministerio de Agricultura, Pesca y Alimentación, MadridGoogle Scholar
  12. Cubera E, Moreno G, Solla A (2009) Quercus ilex root growth in response to heterogeneous conditions of soil bulk density and soil NH4-N content. Soil Till Res 103:16–22CrossRefGoogle Scholar
  13. Curt T, Marsteau C (1997) Systèmes géopédologiques et production forestière sur substratum carbonaté et gréseux en zone méditerranénne. L’exemple des chênes vert et pubescent dans les garrigues du Gard. Étude Gest Sols 4(4):247–263Google Scholar
  14. del Campo AD, Navarro RM, Ceacero CJ (2010) Seedling quality and field performance of commercial stocklots of containerized holm oak (Quercus ilex) in Mediterranean Spain: an approach for establishing a quality standard. New For 39:19–37CrossRefGoogle Scholar
  15. Gómez-Aparicio L, Gómez JM, Zamora R, Boettinger JL (2005) Canopy vs. soil effects of shrubs facilitating tree seedlings in Mediterranean montane ecosystems. J Veg Sci 16:191–198CrossRefGoogle Scholar
  16. Gómez-Aparicio L, Pérez-Ramos M, Mendoza I, Matías L, Quero JL, Castro J, Zamora R, Marañón T (2008) Oak seedling survival and growth along resource gradients in Mediterranean forests: implications for regeneration in current and future environmental scenarios. Oikos 117:1683–1699CrossRefGoogle Scholar
  17. Gracia C (1991) ECOSIM. Simulación y Análisis de Problemas en Ecología. Versión 39.01/A. Dept. Ecologia, Universitat de BarcelonaGoogle Scholar
  18. Griffiths RP, Madritch MD, Swanson AK (2009) The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): implications for the effects of climate change on soil properties. For Ecol Manage 257:1–7CrossRefGoogle Scholar
  19. Kordlaghari MP, Rowell DL (2006) The role of gypsum in the reactions of phosphate with soils. Geoderma 132:105–115CrossRefGoogle Scholar
  20. Le Houérou HN (2000) Restoration and rehabilitation of arid and semiarid Mediterranean ecosystems in North Africa and West Asia. Arid Soil Res Rehab 14:3–14CrossRefGoogle Scholar
  21. Mayor X, Rodà F (1992) Is primary production in holm oak forests nutrient limited? A correlational approach. Vegetatio 99–100:209–217CrossRefGoogle Scholar
  22. Olarieta JR, Usón A, Rodríguez R, Rosa M, Blanco R, Antúnez M (2000) Land requirements for Pinus halepensis Mill. growth in a plantation in Huesca, Spain. Soil Use Manage 16:88–92CrossRefGoogle Scholar
  23. Olarieta JR, Rodríguez-Ochoa R, Cívico V, Ascaso E (2009) Influencia de las características edáficas en el crecimiento de Quercus faginea Lam. y Juglans regia L. en plantaciones en clima semiárido (La Noguera, Lleida). In: S.E.C.F. and Junta de Castilla y León (eds) 5º Congreso Forestal Español. Sociedad Española de Ciencias Forestales, AvilaGoogle Scholar
  24. Oyonarte C, Arana V, Alvarado JJ (1996) Soil solution and micronutrient availability in the rhizosphere of gypsophiles and nongypsophiles plants. In: Poch RM (ed) Proceedings of the international symposium on soils with gypsum. Edicions Universitat de Lleida, Lleida, p 88Google Scholar
  25. Palacios G, Navarro RM, del Campo A, Toral M (2009) Site preparation, stock quality and planting date effect on early establishment of Holm oak (Quercus ilex L.) seedlings. Ecol Eng 35:38–46CrossRefGoogle Scholar
  26. Plieninger T, Rolo V, Moreno G (2010) Large-scale patterns of Quercus ilex, Quercus suber, and Quercus pyrenaica regeneration in Central-Western Spain. Ecosyst 13:644–660CrossRefGoogle Scholar
  27. Plieninger T, Schaich H, Kizos T (2011) Land-use legacies in the forest structure of silvospastoral oak woodlands in the Eastern Mediterranean. Reg Environ Change 11(3):603–615CrossRefGoogle Scholar
  28. Poch RM, De Coster W, Stoops G (1998) Pore space characteristics as indicators of soil behaviour in gypsiferous soils. Geoderma 87:87–109CrossRefGoogle Scholar
  29. Porta J, López-Acevedo M, Rodríguez-Ochoa R (1986) Técnicas y Experimentos en Edafología. Col legi Oficial d’Enginyers Agrònoms de Catalunya, BarcelonaGoogle Scholar
  30. Prévosto B, Monnier Y, Ripert C, Fernandez C (2011) Diversification of Pinus halepensis forests by sowing Quercus ilex and Quercus pubescens acorns: testing the effects of different vegetation and soil tratments. Eur J Forest Res 130:67–76CrossRefGoogle Scholar
  31. Pulido FJ, Díaz M (2005) Regeneration of a Mediterranean oak: a whole cycle approach. Ecosci 12(1):92–102CrossRefGoogle Scholar
  32. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org
  33. Rapp M, Santa Regina I, Rico M, Gallego HA (1999) Biomass, nutrient content, litterfall and nutrient return to the soil in Mediterranean oak forests. For Ecol Manage 119:39–49CrossRefGoogle Scholar
  34. Rodà F, Mayor X, Sabaté S, Diego V (1999) Water and nutrient limitations to primary production. In: Rodà F, Retana J, Gracia CA, Bellot J (eds) Ecology of Mediterranean Evergreen Oak Forests. Springer, Berlin, pp 183–194CrossRefGoogle Scholar
  35. Sardans J, Rodà F, Peñuelas J (2004) Phosphorus limitation and competitive capacities of Pinus halepensis and Quercus ilex subsp. rotundifolia on different soils. Plant Ecol 174:305–317CrossRefGoogle Scholar
  36. Sardans J, Rodà F, Peñuelas J (2006) Effects of a nutrient pulse supply on nutrient status of the Mediterranean trees Quercus ilex subsp. ballota and Pinus halepensis on different soils and under different competitive pressure. Trees 20:619–632CrossRefGoogle Scholar
  37. SSS (Soil Survey Staff) (1999) Soil taxonomy, 2nd edn. USDA, WashingtonGoogle Scholar
  38. Terradas J (1999) Holm oak and holm oak forests: an introduction. In: Rodà F, Retana J, Gracia CA, Bellot J (eds) Ecology of Mediterranean Evergreen Oak Forests. Springer, Berlin, pp 3–14CrossRefGoogle Scholar
  39. Valdecantos A, Cortina J, Vallejo VR (2006) Nutrient status and field performance of tree seedlings planted in Mediterranean degraded areas. Ann For Sci 63:249–256CrossRefGoogle Scholar
  40. Valdecantos A, Baeza MJ, Vallejo VR (2009) Vegetation management for promoting ecosystem resilience in fire-prone mediterranean shrublands. Restor Ecol 17(3):412–421CrossRefGoogle Scholar
  41. Warren RJ II (2008) Mechanisms driving understory evergreen herb distributions across slope aspects: as derived from landscape position. Plant Ecol 198:297–308CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • S. Pascual
    • 1
  • J. R. Olarieta
    • 1
  • R. Rodríguez-Ochoa
    • 1
  1. 1.Dept. Medi Ambient i Ciències del SòlUniversitat de LleidaLleidaSpain

Personalised recommendations