New Forests

, Volume 43, Issue 5–6, pp 561–579 | Cite as

Perspectives in dryland restoration: approaches for climate change adaptation

  • V. Ramón Vallejo
  • Athanasios Smanis
  • Esteban Chirino
  • David Fuentes
  • Alejandro ValdecantosEmail author
  • Alberto Vilagrosa


Reforestation efforts in dryland ecosystems frequently encounter drought and limited soil productivity, although both factors usually interact synergistically to worsen water stress for outplanted seedlings. Land degradation in drylands (e.g. desertification) usually reduces soil productivity and, especially, soil water availability. In dry sub-humid regions, forest fires constitute a major disturbance affecting ecosystem dynamics and reforestation planning. Climate change projections indicate an increase of drought and more severe fire regime in many dryland regions of the world. In this context, the main target of plantation technology development is to overcome transplant shock and likely adverse periods, and in drylands this is mostly related to water limitations. In this paper, we discuss some selected steps that we consider critical for improving success in outplanting woody plants, both under current and projected climate change conditions including: (1) Plant species selection, (2) Improved nursery techniques, and (3) Improved planting techniques. The number of plant species used in reforestation is increasing rapidly, moving from a reduced set of well-known, easy-to-grow, widely used species, to a large variety of promising native species. Available technologies allow for reintroducing native plants and recovering critical ecosystem functions for many degraded drylands. However, climate change projections introduce large uncertainties about the sustainability of current reforestation practices. To cope with these uncertainties, adaptive restoration approaches are suggested, on the basis of improved plant quality, improved techniques for optimizing rain use efficiency in plantations, and exploring native plant species, including provenances and genotypes, for their resilience to fire and water use efficiency.


Mediterranean ecosystems Nursery cultivation Reforestation Species selection Water harvesting 



This paper summarizes some of the outputs generated from research projects funded by the European Commission (FUME - GA243888, and CREOAK - QLRT-2001-01594), by the Spanish Ministries of Science and Innovation (GRACCIE-CSD2007-00067, CONSOLIDER-INGENIO 2010 Program, LORAIN-AGL2008-05532-C02-02, SURVIVE-CGL-2011-30531-CO2-02) and Environment (RECUVES - 077/RN08/04.1; ESTRES, 063/SGTB/2007/7.1), and by the Regional Government of Valencia (APLITEC, GV 05/208; INNOVA, GVPRE/2008/085; FEEDBACKS-PROMETEO/2009/006). Special thanks to the Forest Service in Alicante (Consellería de Medi Ambient, Aigua, Urbanisme i Habitatge, Regional Government of Valencia) for the support given to research. We sincerely thank Carla D’Antonio for her comments and suggestions on the manuscript and the revision of the English version. Fundación CEAM is supported by Generalitat Valenciana and Fundación Bancaja.


  1. Abdelkdair A, Schultz R (2005) Water harvesting in a ‘runoff-catchment’ agroforestry system in the dry lands of Ethiopia. Agrofor Syst 63:291–298CrossRefGoogle Scholar
  2. Ackerly D (2004) Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol Monogr 74:25–44CrossRefGoogle Scholar
  3. Akhter J, Mahmood K, Malik KA, Mardan A, Ahmad M, Iqbal MM (2004) Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedlings growth of barley, wheat and chickpea. Plant Soil Environ 50:463–469Google Scholar
  4. Al-Humaid AI, Moftah AE (2007) Effects of hydrophilic polymer on the survival of buttonwood seedlings grown under drought stress. J Plant Nutr 30:53–66CrossRefGoogle Scholar
  5. Alloza JA (2003) Análisis de repoblaciones forestales en la Comunidad Valenciana. Desarrollo de criterios y procedimientos de evaluación, Ph.D. Thesis, Universidad de ValenciaGoogle Scholar
  6. Alloza JA, Vallejo VR (1999) Relación entre las características meteorológicas del año de plantación y los resultados de las repoblaciones. Ecología 13:173–187Google Scholar
  7. Arbona V, Iglesias DJ, Jacas J, Primo-Millo E, Talon M, Gómez-Cárdenas A (2005) Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant Soil 270:73–82CrossRefGoogle Scholar
  8. Baeza MJ, Raventós J, Escarré A (2002) Factors influencing fire behaviour in shrublands of different stand ages and the implications for using prescribed burning to reduce wildfire risk. J Environ Manag 65:199–208CrossRefGoogle Scholar
  9. Baeza MJ, Valdecantos A, Vallejo VR (2005) Management of Mediterranean shrublands for forest fire prevention. In: Burk AR (ed) New research on forest ecosystems. Nova Science Publ. Inc., New York, pp 37–60Google Scholar
  10. Bainbridge DA (2007) A guide for desert and dryland restoration: new hope for arid lands. Island Press, Washington, DCGoogle Scholar
  11. Bocio I, Navarro FB, Ripoll MA, Jiménez MN, Simón ED (2004) Holm oak (Quercus rotundifolia Lam.) and Aleppo pine (Pinus halepensis Mill.) response to different soil preparation techniques applied to forestation in abandoned farmland. Ann For Sci 61:171–178CrossRefGoogle Scholar
  12. Bonfills P (1978) Le classement des sols en vue de la reforestation en zone méditerranéenne. Biologie et Foret 4:271–282Google Scholar
  13. Bouranis DL, Theodoropoulus AG, Drossopoulus JB (1995) Designing synthetic polymers as soil conditioners. Commun Soil Sci Plant Anal 26:1455–1480CrossRefGoogle Scholar
  14. Canadell J, Zedler PH (1995) Underground structures of woody plants in Mediterranean ecosystems of Australia, California, and Chile. In: Fox M, Kalin M, Zedler PH (eds) Ecology and biogeography of Mediterranean ecosystems in Chile, California and Australia. Springer, Berlin, pp 177–210CrossRefGoogle Scholar
  15. Casals P, Romanyà J, Cortina J, Bottner P, Couteaûx M, Vallejo VR (2000) CO2 efflux from a Mediterranean semi-arid forest soil. I. Seasonality and effects of stoniness. Biogeochemistry 48:261–281CrossRefGoogle Scholar
  16. Chirino E, Vilagrosa A, Rubio E (2003) Efectos de la reducción del riego y la fertilización en las características morfológicas de Quercus suber. Cuad Soc Esp Cienc For 17:51–56Google Scholar
  17. Chirino E, Vilagrosa A, Hernández EI, Matos A, Vallejo VR (2008) Effects of a deep container on morpho-functional characteristics and root colonization in Quercus suber L. seedlings for reforestation in Mediterranean climate. For Ecol Manag 256:779–785CrossRefGoogle Scholar
  18. Chirino E, Vilagrosa A, Cortina J, Valdecantos A, Fuentes D, Trubat R, Luis VC, Puértolas J, Bautista S, Baeza J, Peñuelas JL, Vallejo VR (2009a) Ecological restoration in degraded drylands: the need to improve the seedling quality and site conditions in the field. In: Grossberg SP (ed) Forest management. Nova Publisher, New York, pp 85–158Google Scholar
  19. Chirino E, Vilagrosa A, Vallejo VR (2009b) Utilización de materiales hidro-absorbentes en el substrato de cultivo para reducir el estrés hídrico post-transplante en brinzales de Quercus suber. 5º Congreso Forestal Español. Sociedad Española de Ciencias Forestales y la Junta de Castilla León. In: ( File: 4CFE05-269.pdf
  20. Chirino E, Vilagrosa A, Vallejo VR (2011) Using hydrogel and clay to improve the water status of seedlings for dryland restoration. Plant Soil 344:99–110CrossRefGoogle Scholar
  21. Cortina J, Bellot J, Vilagrosa A, Caturla RN, Maestre F, Rubio E, Ortíz De Urbina JM, Bonet A (2004) Restauración en semiárido. In: Vallejo VR, Alloza JA (eds) Avances en el Estudio de la Gestión del Monte Mediterráneo. CEAM, Valencia, pp 345–406Google Scholar
  22. Cortina J, Peñuelas-Rubira J, Puértolas J, Savé R, Vilagrosa A (2006) Calidad de Planta Forestal para la Restauración en Ambientes Mediterráneos. Ministerio de Medio Ambiente (ed). MadridGoogle Scholar
  23. Cregg BM (1994) Carbon allocation, gas exchange, and needle morphology of Pinus ponderosa genotypes known to differ in growth and survival under imposed drought. Tree Physiol 14:883–898PubMedGoogle Scholar
  24. Dawson TE (1998) Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117:476–485CrossRefGoogle Scholar
  25. Del Campo AD, Navarro RM, Ceacero CJ (2010) Seedling quality and field performance of commercial stocklots of containerized holm oak (Quercus ilex) in Mediterranean Spain: an approach for establishing a quality standard. New For 39:19–37CrossRefGoogle Scholar
  26. Domingo F, Villagarcía L, Brenner AJ, Puigdefábregas J (1999) Evapotranspiration model for semi-arid shrub-lands tested against data from SE Spain. Agric For Meteorol 95:67–84CrossRefGoogle Scholar
  27. Domínguez-Lerena S, Herrero N, Carrasco I, Ocaña L, Peñuelas JL, Mexal JG (2006) Container characteristics influence Pinus pinea seedling development in the nursery and field. For Ecol Manag 221:63–71CrossRefGoogle Scholar
  28. Edwards FS, Bainbridge DA, Zink TA, Allen MF (2000) Rainfall catchments improve survival of container transplants at Mojave Desert site. Ecol Rest 18:100–103Google Scholar
  29. Estrela MJ, Valiente JA, Corell D, Fuentes D, Valdecantos A (2009) Prospective use of collected fog water in the restoration of degraded burned areas under dry Mediterranean conditions. Agric For Meteorol 149:1896–1906CrossRefGoogle Scholar
  30. FAO (1989) Arid zone forestry. A guide for field technicians. Food and Agriculture Organization, RomeGoogle Scholar
  31. Ferran A, Serrasolsas I, Vallejo VR (1992) Soil evolution after fire in Quercus ilex and Pinus halepensis forests. In: Teller A, Mathy P, Jeffers JNR (eds) Responses of forest ecosystems to environmental changes. Elsevier, London, pp 397–405CrossRefGoogle Scholar
  32. Frantz JM, Locke JC, Pitchay DS, Krause CR (2005) Actual performance versus theoretical advantages of polyacrylamide hydrogel throughout bedding plant production. HortScience 40:2040–2046Google Scholar
  33. Fuentes D, Valdecantos A, Vallejo VR (2004) Plantación de Pinus halepensis Mill. y Quercus ilex ssp. ballota (Desf) Samp. en condiciones mediterráneas secas utilizando microcuencas. Cuad Soc Esp Cienc For 17:157–161Google Scholar
  34. Fuentes D, Valdecantos A, Llovet J, Smanis A, Carnicer O, Bautista O (2009) Optimizing water and nutrient pulses in the establishment of seedlings in semiarid Mediterranean areas. In: EECA Ecological Engineering: from concepts to applications. Paris, France, 2–4 Dec 2009Google Scholar
  35. García-Forner N (2010) Caracterització morfologica i funcional en estat hidric optim, i resposta front al deficit hidric de tres especies autoctones del llevant semi-arid mediterrani. Master Project. Universitat de les Illes Balears, SpainGoogle Scholar
  36. Gibbens R, Lenz JM (2001) Root systems of some Chihuahuan Desert plants. J Arid Environ 49:221–263CrossRefGoogle Scholar
  37. Grantz D, Vaughn D, Farber RJ, Kim B, Vancurent T, Campbell R, Bainbridge D, Zink T (1998) Transplanting native plants to revegetate abandoned farmland in the western Mojave Desert. J Environ Qual 27:960–967CrossRefGoogle Scholar
  38. Groeneveld J, Enright NJ, Lamont BB, Wissel C (2002) A spatial model of coexistence among three Banksia species along a topographic gradient in fire-prone shrublands. J Ecol 90:762–774CrossRefGoogle Scholar
  39. Gupta GN (1994) Influence of rain water harvesting and conservation practices on growth and biomass production of Azadirachta indica in the India Desert. For Ecol Manag 70:329–339CrossRefGoogle Scholar
  40. Harris JA, Hobbs RJ, Aronson J (2006) Ecological restoration and global climate change. Restor Ecol 14:170–176CrossRefGoogle Scholar
  41. Hernández EI (2010) Functional traits related to strategies of water use and drought resistance in Mediterranean species. PhD thesis. University of Alicante, SpainGoogle Scholar
  42. Hernández EI, Vilagrosa A, Luis VC, Llorca M, Chirino E, Vallejo RV (2009) Root hydraulic conductance, gas exchange and water potential in seedlings of Pistacia lentiscus L. and Quercus suber L. under different conditions of fertilization and light radiation. Environ Exp Bot 67:269–276CrossRefGoogle Scholar
  43. Hernández EI, Vilagrosa A, Bellot J, Pausas JG (2010) Morphological traits and water use strategies in seedlings of Mediterranean coexisting species. Plant Ecol 207:233–244CrossRefGoogle Scholar
  44. Hernández EI, Pausas JG, Vilagrosa A (2011) Leaf physiological traits in relation to resprouter ability in the Mediterranean Basin. Plant Ecol. doi: 10.1007/s11258-011-9976-1 Google Scholar
  45. Herrera CM (1992) Historical effects and sorting processes as explanations for contemporary ecological patterns; character syndromes in Mediterranean woody plants. Am Nat 140:421–446CrossRefGoogle Scholar
  46. Hüttermann A, Zommorodi M, Reise K (1999) Addition of hydrogels to soil for prolonging the survival of Pinus halepensis seedlings subjected to drought. Soil Tillage Res 50:295–304CrossRefGoogle Scholar
  47. IPCC (2007) Cambio climático 2007: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático [Equipo de redacción principal: Pachauri RK y Reisinger A (directores de la publicación)]. IPCC, Ginebra, Suiza, 104 p. Accessed 03 Aug 2010
  48. Jacobsen AL, Pratt RB, Ewers FW, Davis SD (2007) Cavitation resistance among 26 chaparral species of southern California. Ecol Monogr 77:99–115Google Scholar
  49. Katra I, Lavee H, Sarah P (2008) The effect of rock fragment size and position on topsoil moisture on arid and semi-arid hillslopes. Catena 72:49–55CrossRefGoogle Scholar
  50. Kosmas C, Danalatos NG, Poesen J, van Wesemael B (1998) The effect of water vapour adsorption on soil moisture content under Mediterranean climatic conditions. Agric Water Manag 36:157–168CrossRefGoogle Scholar
  51. Kosmas C, Kirkby M, Geeson N (1999) The MEDALUS project. Mediterranean desertification and land use. Manual on key indicators of desertification and mapping environmentally sensitive areas to desertification. EUR 18882, EC, LuxembourgGoogle Scholar
  52. Landis TD, Tinus RW, Barnett JP (1998) The Container Tree Nursery Manual. Volume 6, Seedling propagation. Agriculture Handbook 674. USDA Forest Service. Washington, DCGoogle Scholar
  53. Li XY (2000) Soil and water conservation in arid and semi-arid areas: the Chinese experience. Ann Arid Zone 39:377–393Google Scholar
  54. Li XY (2003) Gravel-sand mulch for soil and water conservation in the semi-arid loess region of northwest China. Catena 52:105–127CrossRefGoogle Scholar
  55. Li XY, Gao SY, Xu HY, Liu LY (2006a) Growth of Caragana korshinskii using runoff-collecting microcatchments under semi-arid condition. J Hydrol 328:338–346CrossRefGoogle Scholar
  56. Li XY, Shi PJ, Sun YL, Tang J, Yang ZP (2006b) Influence of various in situ rainwater harvesting methods on soil moisture and growth of Tamarix ramosissima in the semi-arid loess region of China. For Ecol Manag 233:143–148CrossRefGoogle Scholar
  57. Li XY, Zhao WW, Song YX, Wang W, Zhang XY (2008) Rainfall harvesting on slopes using contour furrows with plastic-covered transverse ridges for growing Caragana korshinskii in the semi-arid region of China. Agric Water Manag 95:539–544CrossRefGoogle Scholar
  58. Maestre FT, Cortina J, Bautista S, Bellot J, Vallejo R (2003) Small-scale environmental heterogeneity and spatiotemporal dynamics of seedling establishment in a semi-arid degraded ecosystem. Ecosystems 6:630–643CrossRefGoogle Scholar
  59. Marfà O, Lemaire F, Cáceres R, Giuffrida F, Guérin V (2002) Relationships between growing media fertility, percolate composition and fertigation strategy in peat-substitute substrates used for growing ornamental shrubs. Sci Hortic 94:309–321CrossRefGoogle Scholar
  60. Martínez-Mena M, Albaladejo J, Castillo VM (1998) Factors influencing surface runoff generation in a Mediterranean semi-arid environment: Chicamo watershed, SE Spain. Hydrol Process 12:741–754Google Scholar
  61. Mayor AG, Bautista S, Bellot J (2011) Scale-dependent variation in runoff and sediment yield in a semiarid Mediterranean catchment. J Hydrol 397:128–135Google Scholar
  62. Moreira B, Tormo J, Estrelles E, Pausas JG (2010) Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Ann Bot 105:627–635PubMedCrossRefGoogle Scholar
  63. Navarro RM, Del Campo A, Cortina J (2006) Factores que afectan al éxito de una repoblación y su relación con la calidad de la planta. In: Cortina J, Peñuelas JL, Puértolas J, Savé R, Vilagrosa A (eds) Calidad de planta forestal para la restauración en ambientes Mediterráneos. Ministerio de Medio Ambiente, Madrid, pp 31–46Google Scholar
  64. Ochoa J, Valdés R, González A, López J, Conesa E, Franco JA, Fernández JA, Bañón S (2009) Effects of type of plug and the growing media on evapotranspiration and growth of potted carnations. Acta Hortic (ISHS) 843:367–372Google Scholar
  65. Oliet J, Planelles R, López Arias M, Artero F (2002) Soil water content and water relations in planted and naturally regenerated Pinus halepensis Mill. seedlings during the first year in semi-arid conditions. New For 23:31–44CrossRefGoogle Scholar
  66. Oliet JA, Planelles R, Artero F, Valverde R, Jacobs DF, Segura ML (2009) Field performance of Pinus halepensis planted in Mediterranean arid conditions: relative influence of seedling morphology and mineral nutrition. New For 37:313–331CrossRefGoogle Scholar
  67. Owen JJS, Warren SL, Bilderback TT, Albano J, Cassel KD (2008) Physical properties of pine bark substrate amended with industrial mineral aggregate. Acta Hortic 779:131–138Google Scholar
  68. Padilla FM, Pugnaire FI (2007) Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Funct Ecol 21:489–495CrossRefGoogle Scholar
  69. Paula S, Pausas JG (2006) Leaf traits and resprouting ability in the Mediterranean basin. Funct Ecol 20:941–947CrossRefGoogle Scholar
  70. Paula S, Pausas JG (2011) Root traits explain different foraging strategies between resprouting abilities. Oecologia 165:321–331PubMedCrossRefGoogle Scholar
  71. Pausas JG (2004) Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean Basin). Clim Change 63:337–350CrossRefGoogle Scholar
  72. Pausas JG, Vallejo VR (1999) The role of fire in European Mediterranean ecosystems. In: Chuvieco E (ed) Remote sensing of large wildfires. Springer, Berlin, pp 3–16CrossRefGoogle Scholar
  73. Pemán J, Voltas J, Gil Pelegrín E (2006) Morphological and functional variability in the root system of Quercus ilex L. subject to confinement: consequences for afforestation. Ann For Sci 63:425–430CrossRefGoogle Scholar
  74. Pinto JR, Marshall JD, Dumroese RK, Davis AS, Cobos DR (2012) Photosynthetic response, carbon isotopic composition, survival, and growth of three stock types under water stress enhanced by vegetative competition. Can J For Res 42:333–344CrossRefGoogle Scholar
  75. Poesen J, Bunte K (1996) The effect of rock fragments on desertification processes in mediterranean environments. In: Brandt J, Thornes J (eds) Mediterranean desertification and land use. Wiley, Chichester, pp 247–269Google Scholar
  76. Poesen J, Ingelmo-Sanchez F (1992) Runoff and sediment yield from topsoils with different porosity as affected by rock fragment cover and position. Catena 19:451–474CrossRefGoogle Scholar
  77. Poesen J, Lavee H (1994) Rock fragments in top soils: significance and processes. Catena 23:1–28CrossRefGoogle Scholar
  78. Pratt RB, North GB, Jacobsen AL, Ewers FW, Davis SD (2010) Xylem root and shoot hydraulics is linked to life history type in chaparral seedlings. Funct Ecol 24:70–81CrossRefGoogle Scholar
  79. Puértolas J, Gil L, Pardos JA (2003) Effects of nutritional status and seedling size on field performance of Pinus halepensis planted on former arable land in the Mediterranean basin. Forestry 76:159–168CrossRefGoogle Scholar
  80. Puigdefábregas J (2005) The role of vegetation patterns in structuring runoff and sediment fluxes in drylands. Earth Surf Process Landf 30:133–147Google Scholar
  81. Quézel P (1995) La flore du bassin méditerranéen: origine, mise en place, endémisme. Ecologia Mediterranea 21:19–39Google Scholar
  82. Ritter A, Regalado CM, Aschan G (2008) Fog water collection in a subtropical Elfin laurel forest of the Garajonay National Park (Canary Islands): a combined approach using artificial fog catchers and a physically based impaction model. J Hydrometeorol 9:920–935CrossRefGoogle Scholar
  83. Saquete A, Lledó MJ, Escarré A, Ripio MA, de Simón E (2006) Effects of site preparation with micro-basins on Pinus halepensis Mill. afforestations in a semi-arid ombroclimate. Ann For Sci 63:15–22CrossRefGoogle Scholar
  84. Sarvaš M, Pavlenda P, Takáčová E (2007) Effect of hydrogel application on survival and growth of pine seedlings in reclamations. J For Sci 53:204–209Google Scholar
  85. Schwilk D, Ackerly DD (2001) Flammability and serotiny as strategies: correlated evolution in pines. Oikos 94:326–336CrossRefGoogle Scholar
  86. Schwinning S, Sala OE (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–220Google Scholar
  87. Shachak M, Sachs M, Moshe I (1998) Ecosystem management of desertified shrublands in Israel. Ecosystems 1:475–483CrossRefGoogle Scholar
  88. Smanis A, Valdecantos A, Fuentes D (2011) Plant-plant interactions in the restoration of Mediterranean semiarid environments. In: MEDECOS XII Linking science with resource management. Los Angeles, USA, 6–9 Sep 2011Google Scholar
  89. South D, Harris S, Barnett J, Hainds M, Gjerstad D (2005) Effect of container type and seedlings size on survival and early height growth of Pinus palustris seedlings in Alabama, U.S.A. For Ecol Manag 204:385–398CrossRefGoogle Scholar
  90. Thompson JD (2005) Plant evolution in the Mediterranean. Oxford University Press, New YorkCrossRefGoogle Scholar
  91. Trubat R, Cortina J, Vilagrosa A (2011) Nutrient deprivation improves field performance of woody seedlings in a degraded semi-arid shrubland. Ecol Eng 37:1164–1173CrossRefGoogle Scholar
  92. Tsakaldimi M, Zagas T, Tsitsoni T, Ganatsas P (2005) Root morphology, stem growth and field performance of seedlings of two Mediterranean evergreen oaks species raised in different container types. Plant Soil 278:85–93CrossRefGoogle Scholar
  93. Tubeileh A, Bruggeman A, Turkelboom F (2009) Effect of water harvesting on growth of young olive trees in degraded Syrian dryland. Environ Dev Sustain 11:1073–1090CrossRefGoogle Scholar
  94. Tyler CM, Davis FW, Mahall BE (2008) The relative importance of factors affecting age-specific seedling survival of two co-occurring oak species in southern California. For Ecol Manag 255:3063–3074CrossRefGoogle Scholar
  95. Valdecantos A, Cortina J, Vallejo VR (2006) Nutrient status and field performance of tree seedlings planted in Mediterranean degraded areas. Ann For Sci 63:249–256CrossRefGoogle Scholar
  96. Valdecantos A, Fuentes D, Llovet J (2009) Assessment of techniques to improve water availability to seedlings in the restoration of degraded semiarid Mediterranean areas. In: SER World Conference: making change in a changing world. Perth, Australia, 23–27 Aug 2009Google Scholar
  97. Vallejo VR (2009) Problems and perspectives of dryland restoration. In: Bautista S, Aronson J, Vallejo VR (eds) Land restoration to combat desertification. Innovative approaches, quality control and project evaluation, Fundación CEAM, Valencia, pp 13–22Google Scholar
  98. Vallejo VR, Alloza JA (1998) The restoration of burned lands: the case of eastern Spain. In: Moreno JM (ed) Large forest fires. Backhuys Publ, Lieden, pp 91–108Google Scholar
  99. Vallejo VR, Aronson J, Pausas J, Cortina J (2006) Restoration of Mediterranean Woodlands. In: Van Andel J, Aronson J (eds) Restoration Ecology. The New Frontier. Blackwell Publ, Oxford, pp 193–207Google Scholar
  100. Vallejo VR, Allen EB, Aronson J, Pausas JG, Cortina J. Gutiérrez JR (2012) Restoration of Mediterranean-type woodlands and shrublands. In: Van Andel, Aronson J (eds) Restoration Ecology. The New Frontier (2nd Edition), Blackwell Publ, Oxford, pp 130–144.Google Scholar
  101. Van Andel J (1998) Intraespecific variability in the context of ecological restoration projects. Perspect Plant Ecol Evol Syst 1:221–237CrossRefGoogle Scholar
  102. Van Wesemael B, Vertraten JM, Sevink J (1995) Pedogenesis by clay dissolution on acid, low grade metamorphic rocks under Mediterranean forests in southern Tuscany (Italy). Catena 24:105–125CrossRefGoogle Scholar
  103. Verdaguer D, Ojeda F (2002) Root starch storage and allocation patterns in seeder and respprouter seedlings of two Cape Erica (Ericaceae) species. Am J Bot 89:1189–1196PubMedCrossRefGoogle Scholar
  104. Verdú M, Dávila P, García-Fayos P, Flores-Hernández N, Valiente-Banuet A (2003) Convergent traits of Mediterranean woody plants belong to pre-Mediterranean lineages. Biol J Linn Soc 78:415–427CrossRefGoogle Scholar
  105. Vilagrosa A, Vallejo VR, Bellot J, Gil-Pelegrín E (2003) Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J Exp Bot 54:2015–2024PubMedCrossRefGoogle Scholar
  106. Vilagrosa A, Villar-Salvador P, Puértolas J (2006) El endurecimiento en vivero de especies forestales mediterráneas. In: Cortina J, Peñuelas JL, Puértolas J, Savé R, Vilagrosa A (eds) Calidad de planta forestal para la restauración en ambientes Mediterráneos. Ministerio de Medio Ambiente, Madrid, pp 119–140Google Scholar
  107. Villar-Salvador P, Planelles R, Oliet J, Peñuelas-Rubira JL, Jacobs DF, González M (2004a) Drought tolerance and transplanting performance of holm oak (Quercus ilex L.) seedlings after drought hardening in the nursery. Tree Physiol 24:1147–1155PubMedCrossRefGoogle Scholar
  108. Villar-Salvador P, Planelles R, Enríquez E, Peñuelas-Rubira J (2004b) Nursery cultivation regimes, plant functional attributes, and field performance relationships in the Mediterranean oak Quercus ilex L. For Ecol Manag 196:257–266CrossRefGoogle Scholar
  109. Wang XL, Li FM, Jia Y, Shi WQ (2005) Increasing potato yields with additional water and increased soil temperature. Agric Water Manag 78:181–194CrossRefGoogle Scholar
  110. Whisenant SG (1999) Restoring damaged wildlands. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  111. White RP, Nackoney J (2003) Drylands, people and ecosystem goods and services. World Resources Institute, WashingtonGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • V. Ramón Vallejo
    • 1
  • Athanasios Smanis
    • 1
  • Esteban Chirino
    • 1
  • David Fuentes
    • 1
  • Alejandro Valdecantos
    • 1
    Email author
  • Alberto Vilagrosa
    • 1
  1. 1.Fundación de la Comunidad Valenciana Centro de Estudios Ambientales del Mediterráneo (CEAM)Unidad Mixta de Investigación Universidad de Alicante—Fundación CEAMPaterna, ValenciaSpain

Personalised recommendations