New Forests

, Volume 43, Issue 4, pp 397–409 | Cite as

Two Burkholderia strains from nodules of Dalbergia odorifera T. Chen in Hainan Island, southern China

  • J. K. Lu
  • X. H. He
  • L. B. Huang
  • L. H. Kang
  • D. P. XuEmail author


Two Burkholderia strains 8111 and 8201 were isolated from root nodules of Dalbergia odorifera, an endemic woody legume in southern China. Phylogenetic analysis of 16S rRNA gene and 16S-23S gene intergenic spacer (ITS) showed that these two bacterial strains were closely related to Burkholderia cepacia and they were also similar in carbon source utilization using Biolog GN2 plate tests. The DNA G+C content of strains 8111 and 8201 were 65.8 and 65.5 mol%. Inoculation tests demonstrated that both strains 8111 and 8201 formed functional root nodules in their original host D. odorifera, and significantly enhanced plant growth (as measured by plant biomass and nitrogen content), compared to the no-inoculated control plants. Sequencing of 16S rRNA gene in nodules of D. odorifera seedlings inoculated with strains 8111 and 8201 confirmed their identity. However, these two strains did not induce root nodulation in Acacia auriculiformis and Erythrophleum fordii. This implies that the nodulation capacity between Burkholderia strains 8111 or 8201 and their legume hosts may be specific. Our results show that both Burkholderia strains 8111 and 8201 are able to form functional nodules on D. odorifera and are potentially beneficial inoculants for seedling propagation to be used in large scale D. odorifera plantations.


Betaproteobacteria Burkholderia Dalbergia odorifera 16S rRNA 16S-23S Gene internally transcribed spacer Symbiosis 



This work was financially supported by projects from the Guangdong Forestry Science and Technology for Creativity and Special Fund (2009KJCX002-01), the State Forestry Bureau 948 Technology Improvement Program (2008-04-02) and National Natural Science Foundation of China (31170582).


  1. Aguilar C, Bertani I, Venturi V (2003) Quorum-sensing system and stationary-phase sigma factor (rpoS) of the onion pathogen Burkholderia cepacia genomovar I type strain, ATCC 25416. Appl Environ Microbiol 69:1739–1747PubMedCrossRefGoogle Scholar
  2. Aizawa T, Ve NB, Nakajima M, Sunairi M (2010) Burkholderia heleia sp. nov., a nitrogen-fixing bacterium isolated from an aquatic plant, Eleocharis dulcis, that grows in highly acidic swamps in actual acid sulfate soil areas of Vietnam. Int J Syst Evol Microbiol 60:1152–1157PubMedCrossRefGoogle Scholar
  3. Barrett CF, Parker MA (2005) Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama. Syst Appl Microbiol 28:57–65PubMedCrossRefGoogle Scholar
  4. Barrett CF, Parker MA (2006) Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. Appl Environ Microbiol 72:1198–1206PubMedCrossRefGoogle Scholar
  5. Caballero-Mellado J, Martinez-Aguilar L, Paredes-Valdez G, Estrada-de los Santos P (2004) Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 54:1165–1172PubMedCrossRefGoogle Scholar
  6. Chen WP, Kuo Tsong-teh (1993) A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res 21:2260PubMedCrossRefGoogle Scholar
  7. Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735PubMedCrossRefGoogle Scholar
  8. Chen WM, de Faria SM, Straliotto R, Pitard RM, Simoes-Araujo JL, Chou J-H, Chou YJ, Barrios E, Prescott AR, Elliott GN, Sprent JI, Young JPW, James EK (2005a) Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America. Appl Environ Microbiol 71:7461–7471PubMedCrossRefGoogle Scholar
  9. Chen WM, James EK, Chou J-H, Sheu S-Y, Yang S-Z, Sprent JI (2005b) β-Rhizobia from Mimosa pigra, a newly discovered invasive plant in Taiwan. New Phytol 168:661–675PubMedCrossRefGoogle Scholar
  10. Chen WM, James EK, Coenye T, Chou J-H, Barrios E, de Faria SM, Elliott GN, Sheu S-Y, Sprent JI, Vandamme P (2006) Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 56:1847–1851PubMedCrossRefGoogle Scholar
  11. Chen WM, Sergio MF, James EK, Elliott GN, Lin KY, Chou JH, Sheu SY, Cnockaert M, Sprent JI, Vandamme P (2007a) Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 57:1055–1059PubMedCrossRefGoogle Scholar
  12. Chen WM, de Faria SM, James EK, Elliott GN, Lin KY, Chou JH, Sheu SY, Cnockaert M, Sprent JI, Vandamme P (2007b) Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 57:1055–1059PubMedCrossRefGoogle Scholar
  13. Coenye T, LiPuma JJ, Henry D, Hoste B, Vandemeulebroecke K, Gillis M, Speert DP, Vandamme P (2001a) Burkholderia cepacia genomovar VI, a new member of the Burkholderia cepacia complex isolated from cystic fibrosis patients. Int J Syst Evol Microbiol 51:271–279PubMedCrossRefGoogle Scholar
  14. Coenye T, Mahenthiralingam E, Henry D, LiPuma JJ, Laevens S, Gillis M, Speert DP, Vandamme P (2001b) Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int J Syst Evol Microbiol 51:1481–1490PubMedCrossRefGoogle Scholar
  15. De Ley J (1970) Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754PubMedGoogle Scholar
  16. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci 89:5685–5689PubMedCrossRefGoogle Scholar
  17. Elliott GN, Chen WM, Bontemps C, Chou JH, Young JPW, Sprent JI, James EK (2007a) Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann Bot 100:1403–1411PubMedCrossRefGoogle Scholar
  18. Elliott GN, Chen WM, Chou JH, Wang HC, Sheu S-Y, Perin L, Reis VM, Moulin L, Simon MF, Bontemps C, Sutherland JM, Bessi R, De Faria SM, Trinick MJ, Prescott AR, Sprent JI, James EK (2007b) Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytol 173:168–180PubMedCrossRefGoogle Scholar
  19. Elliott GN, Chou JH, Chen WM, Bloemberg GV, Bontemps C, Martínez-Romero E, Velázquez E, Young JPW, Sprent JI, James EK (2009) Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. Environ Microbiol 11:762–778PubMedCrossRefGoogle Scholar
  20. Gao JL, Sun JG, Li Y, Wang ET, Chen WX (1994) Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. Int J Syst Bacteriol 44:151–158CrossRefGoogle Scholar
  21. Graham PH (1992) Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Can J Microbiol 38:475–484CrossRefGoogle Scholar
  22. Hallack LF, Passos DS, Mattos KA, Agrellos OA, Jones C, Mendonça-Previato L, Previato JO, Todeschini AR (2010) Structural elucidation of the repeat unit in highly branched acidic exopolysaccharides produced by nitrogen fixing Burkholderia. Glycobiology 20:338–347PubMedCrossRefGoogle Scholar
  23. Holden MTG, Seth-Smith HMB, Crossman LC, Sebaihia M, Bentley SD, Cerdeno-Tarraga AM, Thomson NR, Bason N, Quail MA, Sharp S, Cherevach I, Churcher C, Goodhead I, Hauser H, Holroyd N, Mungall K, Scott P, Walker D, White B, Rose H, Iversen P, Mil-Homens D, Rocha EPC, Fialho AM, Baldwin A, Dowson C, Barrell BG, Govan JR, Vandamme P, Hart CA, Mahenthiralingam E, Parkhill J (2009) The Genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol 191:261–277PubMedCrossRefGoogle Scholar
  24. Kwon SW, Park JY, Kim JS, Kang JW, Cho YH, Lim CK, Parker MA, Lee GB (2005) Phylogenetic analysis of the genera Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium on the basis of 16S rRNA gene and internally transcribed spacer region sequences. Int J Syst Evol Microbiol 55:263–270PubMedCrossRefGoogle Scholar
  25. Le Roux C, Tentchev D, Prin Y, Goh D, Japarudin Y, Perrineau MM, Duponnois R, Domergue O, de Lajudie P, Galiana A (2009) Bradyrhizobia nodulating the Acacia mangium × A. auriculiformis interspecific hybrid are specific and differ from those associated with both parental species. Appl Environ Microbiol 75:7752–7759PubMedCrossRefGoogle Scholar
  26. Leff LG, Kernan RM, McArthur JV, Shimkets LJ (1995) Identification of aquatic Burkholderia (Pseudomonas) cepacia by hybridization with species-specific rRNA gene probes. Appl Environ Microbiol 61:1634–1636PubMedGoogle Scholar
  27. Lin DX, Chen WF, Wang FQ, Hu D, Wang ET, Sui XH, Chen WX (2009) Rhizobium mesosinicum sp. nov., isolated from root nodules of three different legumes. Int J Syst Evol Microbiol 59:1919–1923PubMedCrossRefGoogle Scholar
  28. LiPuma JJ (2005) Update on the Burkholderia cepacia complex. Curr Opin Pulm Med 11:528–533PubMedCrossRefGoogle Scholar
  29. Lu J, Xu D, Yang Z, Zhang N (2011) Isolation, identification of slow-growing rhizobium DG and its symbiosis with Dalbergia odorifera. Chin J Appl Environ Biol 17:379–383CrossRefGoogle Scholar
  30. Martinez-Aguilar L, Diaz R, Pena-Cabriales JJ, Estrada-de los Santos P, Dunn MF, Caballero-Mellado J (2008) Multichromosomal genome structure and confirmation of diazotrophy in novel plant-associated Burkholderia species. Appl Environ Microbiol 74:4574–4579PubMedCrossRefGoogle Scholar
  31. Miller SCM, LiPuma JJ, Parke JL (2002) Culture-based and non-growth-dependent detection of the Burkholderia cepacia complex in soil environments. Appl Environ Microbiol 68:3750–3758PubMedCrossRefGoogle Scholar
  32. Moulin L, Antonio M, Bernard D, Catherine BM (2001) Nodulation of legumes by members of the β-subclass of Proteobacteria. Nature 411:948–950PubMedCrossRefGoogle Scholar
  33. Nghia N (1998) Erythrophleum fordii. In: IUCN 2010. IUCN Red list of threatened speciesGoogle Scholar
  34. Onofre-Lemus J, Hernandez-Lucas I, Girard L, Caballero-Mellado J (2009) ACC (1-Aminocyclopropane-1-Carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75:6581–6590PubMedCrossRefGoogle Scholar
  35. Otsuka Y, Muramatsu Y, Nakagawa Y, Matsuda M, Nakamura M, Murata H (2011) Burkholderia oxyphila sp. nov., a bacterium isolated from acidic forest soil that catabolizes (+)-catechin and its putative aromatic derivatives. Int J Syst Evol Microbiol 61:249–254PubMedCrossRefGoogle Scholar
  36. Parker MA (2003) Genetic markers for analysing symbiotic relationships and lateral gene transfer in Neotropical bradyrhizobia. Mol Ecol 12:2447–2455PubMedCrossRefGoogle Scholar
  37. Rasolomampianina R, Bailly X, Fetiarison R, Rabevohitra R, Béna G, Ramaroson L, Raherimandimby M, Moulin L, De Lajudie P, Dreyfus B, Avarre JC (2005) Nitrogen-fixing nodules from rose wood legume trees (Dalbergia spp.) endemic to Madagascar host seven different genera belonging to α- and β-Proteobacteria. Mol Ecol 14:4135–4146PubMedCrossRefGoogle Scholar
  38. Reis VM, Estrada-de los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, Mavingui P, Baldani VLD, Schmid M, Baldani JI, Balandreau J, Hartmann A, Caballero-Mellado J (2004) Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54:2155–2162PubMedCrossRefGoogle Scholar
  39. Singh R, Mishra R, Jaiswal H, Kumar V, Pandey S, Rao S, Annapurna K (2006) Isolation and identification of natural endophytic rhizobia from Rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis. Curr Microbiol 52:345–349PubMedCrossRefGoogle Scholar
  40. Talbi C, Delgado MJ, Girard L, Ramirez-Trujillo A, Caballero-Mellado J, Bedmar EJ (2010) Burkholderia phymatum capable of nodulating Phaseolus vulgaris are present in Moroccan soils. Appl Environ Microbiol 76:4587–4591PubMedCrossRefGoogle Scholar
  41. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  42. Valverde A, Velazquez E, Gutierrez C, Cervantes E, Ventosa A, Igual JM (2003) Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 53:1979–1983PubMedCrossRefGoogle Scholar
  43. Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289PubMedCrossRefGoogle Scholar
  44. Vandamme P, Goris J, Chen WM, de Vos P, Willems A (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512PubMedCrossRefGoogle Scholar
  45. Vanlaere E, LiPuma JJ, Baldwin A, Henry D, De Brandt E, Mahenthiralingam E, Speert D, Dowson C, Vandamme P (2008) Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol 58:1580–1590PubMedCrossRefGoogle Scholar
  46. Vanlaere E, Baldwin A, Gevers D, Henry D, De Brandt E, LiPuma JJ, Mahenthiralingam E, Speert DP, Dowson C, Vandamme P (2009) Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol 59:102–111PubMedCrossRefGoogle Scholar
  47. Vincent JM (1970) A manual for the practical study of root-nodule bacteria. In: International Biological Programme Handbook, pp 73–97Google Scholar
  48. Wilson DO, Trang KM (1980) Effects of storage temperature and enumeration method on Rhizobium spp. numbers in peat inoculants. Trop Agric 57:233–238Google Scholar
  49. Yang HC, Im WT, Kim KK, An DS, Lee ST (2006) Burkholderia terrae sp. nov., isolated from a forest soil. Int J Syst Evol Microbiol 56:453–457PubMedCrossRefGoogle Scholar
  50. Yu X, Wang W, Yang M (2007) Antioxidant activities of compounds isolated from Dalbergia odorifera T. Chen and their inhibition effects on the decrease of glutathione level of rat lens induced by UV irradiation. Food Chem 104:715–720CrossRefGoogle Scholar
  51. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • J. K. Lu
    • 1
  • X. H. He
    • 2
    • 3
  • L. B. Huang
    • 4
  • L. H. Kang
    • 1
  • D. P. Xu
    • 1
    • 5
    Email author
  1. 1.Research Institute of Tropical ForestryChinese Academy of ForestryGuangzhouThe People’s Republic of China
  2. 2.Centre for Ecosystem Management, School of Natural ResourcesEdith Cowan UniversityJoondalupAustralia
  3. 3.State Centre of Excellence for Ecohydrology and School of Plant BiologyUniversity of Western AustraliaCrawleyAustralia
  4. 4.Centre for Mined Land Rehabilitation, Sustainable Minerals InstituteThe University of QueenslandBrisbaneAustralia
  5. 5.LongdongThe People’s Republic of China

Personalised recommendations