New Forests

, Volume 43, Issue 2, pp 197–211 | Cite as

Carbon accumulation in aboveground and belowground biomass and soil of different age native forest plantations in the humid tropical lowlands of Costa Rica

  • William Fonseca
  • Federico E. Alice
  • José María Rey-Benayas


Generic or default values to account for biomass and carbon accumulation in tropical forest ecosystems are generally recognized as a major source of errors, making site and species specific data the best way to achieve precise and reliable estimates. The objective of our study was to determine carbon in various components (leaves, branches, stems, structural roots and soil) of single-species plantations of Vochysia guatemalensis and Hieronyma alchorneoides from 0 to 16 years of age. Carbon fraction in the biomass, mean (±standard deviation), for the different pools varied between 38.5 and 49.7% (±3 and 3.8). Accumulated carbon in the biomass increased with the plantation age, with mean annual increments of 7.1 and 5.3 Mg ha−1 year−1 for forest plantations of V. guatemalensis and H. alchorneoides, respectively. At all ages, 66.3% (±10.6) of total biomass was found within the aboveground tree components, while 18.6% (±20.9) was found in structural roots. The soil (0–30 cm) contained 62.2 (±13) and 71.5% (±17.1) of the total carbon (biomass plus soil) under V. guatemalensis and H. alchorneoides, respectively. Mean annual increment for carbon in the soil was 1.7 and 1.3 Mg ha−1 year−1 in V. guatemalensis and H. alchorneoides. Allometric equations were constructed to estimate total biomass and carbon in the biomass which had an R 2aj (adjusted R square) greater than 94.5%. Finally, we compare our results to those that could have resulted from the use of default values, showing how site and species specific data contribute to the overall goal of improving carbon estimates and providing a more reliable account of the mitigation potential of forestry activities on climate change.


Allometric equations Biomass expansion factor Carbon fraction Native tree plantations Soil 



The authors would like to express their sincere gratitude to Johan Montero and Henry Toruño, researchers at the Forestry Research and Services Institute from the National University of Costa Rica, for their support during field data collection. This work received finance from the National University of Costa Rica, the Costa Rican Ministry of Science and Technology and from the private sector.


  1. Arreaga W (2002) Almacenamiento de carbono en bosques con manejo forestal en la Reserva de la Biosfera Maya, Petén, Guatemala. Tesis Mag Sc. CATIE, Turrialba, CRGoogle Scholar
  2. Bauhus J, Khanna P K, Hopman P, Ludwing B, Weston C (2005) Evaluation of soil organic matter as a meaningful indicator of important soil properties and processes in native forest ecosystems. Australian Government. Forest and Wood Products. Research and Development Corporation. Project No. PN99.803. 53 p.
  3. Bremner JM, Mulvaney C (1982) Carbon, inorganic nitrogen. In: Miller R, Keeney D (eds) Methods for soil analysis: chemical and microbiological properties, 2nd edn. American Society of Agronomy, Madison, pp 552, 673–682Google Scholar
  4. Buvaneswaran C, George M, Pérez D, Kanninen M (2006) Biomass of teak plantations in Tamil Nadu, India and Costa Rica compared. J Trop For Sci 18(3):195–197Google Scholar
  5. Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456PubMedCrossRefGoogle Scholar
  6. Canadell J, Ciais P, Cox P, Heimann M (2004) Quantifying terrestrial carbon sinks. Clim Change 67:145–146CrossRefGoogle Scholar
  7. Canadell JG, Kirschbaum MUF, Kurz WA, Sanz MJ, Schlamadinger B, Yamagata Y (2007) Factoring out natural and indirect human effects on terrestrial carbon sources and sinks. Environ Sci Policy 10:370–384CrossRefGoogle Scholar
  8. Carpio I (1995) Maderas de Costa Rica: 150 especies comerciales. Ed. Universidad de Costa Rica, 2nd edn. San José, 338 pGoogle Scholar
  9. CATIE (2003) Árboles de Centroamérica: un manual para extensionistas. J Cordero y DH Boshier (ed) Turrialba, Costa Rica. CATIE, 1079 pGoogle Scholar
  10. Chacón AR, Montenegro J, Sasa J (2009) Inventario Nacional de Gases con Efecto Invernadero y Absorción de Carbono en Costa Rica en el 2000 y 2005. Gobierno de Costa Rica, Ministerio del Ambiente, Energía y Telecomunicaciones, Instituto Meteorológico Nacional. 78 p.
  11. Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R (2004) Error propagation and scaling for tropical forest biomass estimates. Phil Trans R Soc Lond B 359:409–420. Google Scholar
  12. Cubero J, Rojas S (1999) Fijación de carbono en plantaciones de Gmelina arborea, Tectona grandis y Bombacopsis quinata. Tesis de Licenciatura. Heredia, Costa Rica, Universidad Nacional, Escuela de Ciencias Ambientales. 94 p.
  13. Dauber E, Terán J, Guzmán R (2008) Estimaciones de biomasa y carbono en bosques naturales de Bolivia. Revista Forestal Iberoamericana 1(1):1–10.
  14. Elias M, Potvin C (2003) Assessing inter- and intra-specific variation in trunk carbon concentration for 32 neotropical tree species. Can J For Res 33:1039–1045CrossRefGoogle Scholar
  15. FAO (2006) Global Forest Resource Assessments 2005: progress towards sustainable forest management. FAO Forestry Paper N 146.
  16. Fisher RF (1995) Amelioration of degraded rain forest soils by plantations of native trees. Soil Sci Soc Am J 59:544–549CrossRefGoogle Scholar
  17. Fonseca W, Alice F, Rey-Benayas JM (2009) Modelos para estimar la biomasa de especies nativas en plantaciones y bosques secundarios en la zona Caribe de Costa Rica. Bosque 30:36–47Google Scholar
  18. Gaboury S, Boucher JF, Villeneuve C, Lord D, Gagnon R (2009) Estimating the net carbon balance of boreal open woodland afforestation: a case-study in Quebec’s closed-crown boreal forest. For. Ecol. Manage. 257:483–494CrossRefGoogle Scholar
  19. Gamboa A, Hidalgo C, de León F, Etchevers J, Gallardo J, Campo J (2008) Nutrient addition differentially affects soil carbon sequestration in secondary tropical dry forests: early- versus late-succession stages. Restor Ecol 18(2):252–260. Google Scholar
  20. Gayoso J, Guerra J (2005) Contenido de carbono en la biomasa aérea de bosques nativos en Chile. Bosque 26:33–38Google Scholar
  21. Gifford R (2000) Carbon contents of above-ground tissues of forest and woodland trees. Australian Greenhouse Office, National Carbon Accounting System, Technical. Report No. 22, Canberra, 17 pGoogle Scholar
  22. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8:345–360CrossRefGoogle Scholar
  23. Gutiérrez VH, Lopera J (2001) Metodología para la cuantificación de existencias y flujo de carbono en plantaciones forestales. Valdivia, Chile. Simposio Internacional Medición y Monitoreo de la Captura de Carbono en Ecosistemas Forestales, 18 al 20 de octubre del 2001. 17 p.
  24. Herrera W (1985) Clima de Costa Rica: Vegetación y Clima de Costa Rica. Volumen 2. Gómez LD (ed) UNED, San José, 118 pGoogle Scholar
  25. Hoen H, Solberg B (1994) Potential and economic efficiency of carbon sequestration in forest biomass through silvicultural management. Forest Sci 40:429–451Google Scholar
  26. Holdridge L (1967) Life zone ecology. Centro Científico Tropical, San JoséGoogle Scholar
  27. Husch B (2001) Estimación del contenido de carbono en los bosques. Valdivia, Chile. Simposio Internacional Medición y Monitoreo de la Captura de Carbono en Ecosistemas Forestales, 18 al 20 de octubre del 2001. 9 p.
  28. IPCC (2007) Climate change 2007: mitigation of climate change. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 851Google Scholar
  29. ITCR (2004) Atlas digital de Costa Rica. Laboratorio de Sistemas de Información Geográfica, Escuela de Ingeniería Forestal, Cartago, CRGoogle Scholar
  30. Ito A, Penner JE, Prather MJ, de Campos CP, Houghton RA, Kato T, Jain AK, Yang X, Hurtt GC, Frolking S, Fearon MG, Chini LP, Wang A, Price DT (2008) Can we reconcile differences in estimates of carbon fluxes from land-use change and forestry for the 1990s? Atmos Chem Phys 8:3291–3310. Google Scholar
  31. Jackson R, Jobba E, Avissar R, Somnath R, Barrett D, Cook CH, Farley K, Le Maitre D, McCarl B, Murray B (2005) Trading water for carbon with biological carbon sequestration. Science 310:1944–1947PubMedCrossRefGoogle Scholar
  32. Jandl R (2006) Secuestro de carbono en bosques: el papel del suelo. Taller internacional sobre secuestro de carbono. IUFRO-RIFALC, 9 pGoogle Scholar
  33. Keith H, Mackey BG, Lindenmayer DB (2009) Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. PNAS 106(28):11635–11640. Google Scholar
  34. Loguercio G, Defossé G (2001) Ecuaciones de biomasa aérea, factores de expansión y de reducción de la lenga Nothofagus pumilio (Poepp. et Endl) Krasser, en el So del Chubut, Argentina. In Simposio Internacional Medición y Monitoreo de la Captura de Carbono en Ecosistemas Forestales. Valdivia, Chile. 18 al 20 de octubre de 2001, 11 pGoogle Scholar
  35. Losi CJ, Siccama TG, Condit R, Morales JE (2003) Analysis of alternative methods for estimating carbon stock in young tropical plantations. For Ecol Manage 184:355–368CrossRefGoogle Scholar
  36. MacDicken K (1997) A guide to monitoring carbon storage in forestry and agroforestry projects. Forest carbon monitoring program. Winrock International Institute for Agricultural Development (WRI).
  37. Mena M (2009) Clima de Costa Rica. Vertiente del Caribe. Instituto Meteorológico Nacional.
  38. Mendoza J, Karltun E, Olsson M (2003) Estimations of amounts of soil organic carbon and fine root carbon in land use and land cover classes, and soil types of Chiapas highlands, Mexico. For Ecol Manage 177:191–206CrossRefGoogle Scholar
  39. Montagnini F (2000) Accumulation in above-ground biomass and soil storage of mineral nutrients in pure and mixed plantations in a humid tropical lowland. For Ecol Manage 134:257–270CrossRefGoogle Scholar
  40. Montagnini F, Mendelsohn RO (1997) Managing forest fallows: improving the economics of Sweden agriculture. R Swedish Acad Sci Ambio 26(2):118–123Google Scholar
  41. Montagnini F, Kanninen M, Montero M, Alice F (2003) Sostenibilidad de las plantaciones forestales: Ciclaje de nutrientes y efectos de la especies sobre la fertilidad de los suelos. 13 p.
  42. Montero M, Kanninen M (2002) Biomasa y Carbono en plantaciones de Terminalia amazonia (Gmel.) Excell en la zona Sur de Costa Rica. Revista Forestal Centroamericana 39–40:50–55Google Scholar
  43. Montero M, Montagnini F (2006) Modelos alométricos para la estimación de biomasa de diez especies nativas en plantaciones en la región Atlántica de Costa Rica. Recursos Naturales y Ambiente 45:118–125Google Scholar
  44. Montero M, de los Santos H, Kanninen M (2007) Hieronyma alchorneoides: Ecología y silvicultura en Costa Rica. Turrialba, Costa Rica, CATIE. 50 p. (Serie técnica/Informe técnico n 354). ISBN 978-9977-57-434-9Google Scholar
  45. Nabuurs GJ, Masera O, Andrasko K, Benitez-Ponce P, Boer R, Dutschke M, Elsiddig E, Ford-Robertson J, Frumhoff P, Karjalainen T, Krankina O, Kurz WA, Matsumoto M, Oyhantcabal W, Ravindranath NH, Sanz Sanchez MJ, Zhang X (2007) Forestry. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  46. Návar J (2009) Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. For Ecol Manage 257:427–434CrossRefGoogle Scholar
  47. Paquette A, Messier C (2010) The role of plantations in managing the world’s forests in the Anthropocene. Front Ecol Environ 8(1):27–34CrossRefGoogle Scholar
  48. Pérez D, Kanninen M (2002) Wood specific gravity and aboveground biomass of Bombacopsis quinata plantations in Costa Rica. For Ecol Manage 165:1–9CrossRefGoogle Scholar
  49. Pérez D, Kanninen M (2003) Aboveground biomass of Tectona grandis plantations in Costa Rica. J Trop For Sci 15:199–213Google Scholar
  50. Petit B, Montagnini F (2004) Growth equations and rotation ages of ten native tree species in mixed and pure plantations in the humid neotropics. For Ecol Manage 199:243–257CrossRefGoogle Scholar
  51. Piotto D, Craven D, Montagnini F, Alice F (2010) Silvicultural and economic aspects of pure and mixed native tree species plantations on degraded pasturelands in humid Costa Rica. New For 39:369–385. doi: 10.1007/s11056-009-9177-0)Google Scholar
  52. Powers JS, Veldkamp E (2005) Regional variation in soil carbon and δ13C in forests and pastures of northeastern Costa Rica. Biogeochemistry 72:315–336CrossRefGoogle Scholar
  53. Prodan M, Peters R, Cox F, Real P (1997) Mensura forestal. Serie de investigación y evaluación en desarrollo sostenible. San José, Costa Rica, IICA, GTZ, 561 pGoogle Scholar
  54. Redondo A (2007) Growth, carbon sequestration, and management of native tree plantations in humid regions of Costa Rica. New Forests 34:253–268CrossRefGoogle Scholar
  55. Redondo A, Montagnini F (2006) Growth, productivity, biomass, and carbon sequestration of pure and mixed native tree plantations in the Atlantic lowlands of Costa Rica. For Ecol Manag 232:168–178CrossRefGoogle Scholar
  56. Rhoades CC, Eckert GE, Coleman DC (2000) Soil carbon differences among forest, agriculture, and secondary vegetation in lower montane. Ecuador Ecol Appl 10:497–505CrossRefGoogle Scholar
  57. Russell AE, Raich JW, Valverde OJ, Fisher RF (2007) Tree species effects on soil properties in experimental plantations in tropical moist forest. Soil Sci Soc Am J 71(4):1389–1397CrossRefGoogle Scholar
  58. Salas C (2002) Ajuste y validación de ecuaciones de volumen para un relicto del bosque de Roble-Laurel-Lingue. Bosque 23(2):81–92Google Scholar
  59. Sarmiento G, Pinillos M, Garay I (2005) Biomass variability in tropical American lowland rainforests. ECOTROPICOS 18(1):1–20Google Scholar
  60. Schedlbauer J, Kavanagh K (2008) Soil carbon dynamics in a chronosequence of secondary forests in northeastern Costa Rica. For Ecol Manage 255:1326–1335CrossRefGoogle Scholar
  61. Schöning I, Totsche KU, Kögel-Knabner I (2006) Small scale spatial variability of organic carbon stocks in litter and solum of a forested Luvisol. Geoderma 136:631–642CrossRefGoogle Scholar
  62. Segura M, Andrade H (2008) ¿Cómo hacerlo? ¿Cómo construir modelos alométricos de volumen, biomasa o carbono de especies leñosas perennes? Agroforestería de las Américas 46:89–96Google Scholar
  63. Segura M, Kanninen M (2002) Inventario para estimar carbono en ecosistemas forestales. In: Orozco L, Brumer C (eds) Inventarios forestales para bosques latifoliados en América Central. CATIE, Turrialba, pp 173–212. (Serie Técnica. Manual Técnico No. 50)Google Scholar
  64. Segura M, Kanninen M, Alfaro M, Campos JJ (2000) Almacenamiento y fijación de carbono en bosques de bajura de la zona Atlántica de Costa Rica. Revista Forestal Centroamericana 30:23–28Google Scholar
  65. Singh SK, Singh AK, Sharma BK, Tarafdar JC (2007) Carbon stock and organic carbon dynamics in soils of Rajasthan, India. J Arid Environ 68:408–421CrossRefGoogle Scholar
  66. Solís M, Moya R (2004a) Hyeronima alchorneoides en Costa Rica. San José, Costa Rica, FONAFIFO—Ministerio de Energía y Ambiente de Costa Rica, 98 p.
  67. Solís M, Moya R (2004b) Vochysia guatemalensis en Costa Rica. San José, Costa Rica, FONAFIFO—Ministerio de Energía y Ambiente de Costa Rica, 100 p.
  68. Soliz B (1998) Valoración económica del almacenamiento y fijación de carbono en un bosque subhúmedo estacional de Santa Cruz, Bolivia. Tesis Mag Sc. CATIE, Turrialba, 113 pGoogle Scholar
  69. Sombroek WG, Nachtergaele FO, Hebel A (1993) Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. Ambio 22:417–426Google Scholar
  70. Somogyi Z, Teobaldelli M, Federici S, Matteucci G, Pagliari V, Grassi G, Seufert G (2008) Allometric biomass and carbon factors database. iForest 1:107–113. Google Scholar
  71. Subak S (2000) Forest protection and reforestation in Costa Rica: Evaluation of a clean development mechanism prototype. Environ Manage 26(3):283–297PubMedCrossRefGoogle Scholar
  72. Tan Z, Liu S, Tieszen L, Tachie-Obeng E (2009) Simulated dynamics of carbon stocks driven by changes in land use, management and climate in a tropical moist ecosystem of Ghana. Agric Ecosyst Environ 130(3–4):171–176CrossRefGoogle Scholar
  73. Tschakert P, Coomes OT, Potvin C (2007) Indigenous livelihoods, slash-and-burn agriculture, and carbon stocks in Eastern Panama. Ecol Econ 60:807–820CrossRefGoogle Scholar
  74. Turner J, Lambert MJ, Johnson DW (2005) Experience with patterns of change in soil carbon resulting from forest plantation establishment in eastern Australia. For Ecol Manage 220:259–269CrossRefGoogle Scholar
  75. UNFCCC (2010) Report on the informal meeting of experts on enhancing coordination of capacity-building activities in relation to using the intergovernmental panel on climate change guidance and guidelines as a basis for estimating forest-related greenhouse gas emissions and removals, forest carbon stocks and forest area changes. Bonn, 25–26 May 2010.
  76. van Bodegom A , van den Berg Y , van der Meer P (2008) Forest plantations for sustainable production in the tropics. Wageningen University and Research Centre, The Netherlands. ISBN 978-90-8585-231-5.
  77. van Noordwijk M, Rahayu S, Hairiah K, Wulan YC, Farida A, Verbist B (2002) Carbon stock assessment for a forest-to-coffee conversion landscape in Sumber-Jaya (Lampung, Indonesia): from allometric equations to land use change analysis. Sci China 45(Series C):75–86Google Scholar
  78. Veldkamp E, Becker A, Schwendenmann L, Clark D, Schulte -Bisping H (2003) Substantial labile carbon stocks and microbial activity in deeply weathered soils below a tropical wet forest. Glob Change Biol 9:1171–1184CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • William Fonseca
    • 1
  • Federico E. Alice
    • 1
  • José María Rey-Benayas
    • 2
  1. 1.Escuela de Ciencias AmbientalesUniversidad Nacional de Costa RicaHerediaCosta Rica
  2. 2.Departamento de EcologíaUniversidad de AlcaláMadridSpain

Personalised recommendations