New Forests

, Volume 43, Issue 1, pp 69–87 | Cite as

Foliar herbivory and leaf traits of five native tree species in a young plantation of Central Panama

  • Gillian S. Paul
  • Florencia Montagnini
  • Graeme P. Berlyn
  • Dylan J. Craven
  • Michiel van Breugel
  • Jefferson S. Hall
Article

Abstract

This study examined foliar herbivory on 1 year-old tree saplings planted in previously abandoned fields in central Panama. Plots (15 × 15 trees) of Anacardium excelsum (Anacardiaceae), Dalbergia retusa (Fabaceae), Pachira quinata (Malvaceae), Tabebuia rosea (Bignoniaceae), and Terminalia amazonia (Combretaceae) were tested for herbivory using leaf counts and digital image analysis. Values of foliar carbon, foliar nitrogen, specific leaf area (SLA), and leaf toughness were analyzed to describe mechanical defenses and leaf nutrients on young and mature leaves of each of these species. For all five species, less than 10% of total leaf area was found to be damaged by arthropods. Significant (P-value < 0.001) differences in herbivory were found among both the tree species and the insect feeding guilds considered: chewing, skeletonizing, mining, and leaf-rolling. On mature leaves, Anacardium excelsum had the highest amount of leaf damage (3.53%) while Dalbergia retusa exhibited the lowest herbivore damage (1.72%). Tabebuia rosea had statistically significantly higher damage than other species for young leaves caused by leaf-rolling insects (4.21% rolling of 5.55% total damage). Leaf toughness was negatively correlated with SLA and foliar N. Linear regressions showed that herbivory was positively correlated with foliar N for young leaves and negatively correlated with foliar N for mature leaves. No statistically significant relationships were found between herbivory and the mechanical properties of toughness and SLA. Overall, results from this study indicate that, as young saplings, the species evaluated did not suffer high amounts of foliar herbivory in the plantation environment.

Keywords

Central America Defoliation Leaf defenses Native species plantations Reforestation Tropical timber trees 

References

  1. Aide TM (1993) Patterns of leaf development and herbivory in a tropical understory community. Ecology 74:455–466. doi:10.2307/1939307 CrossRefGoogle Scholar
  2. Altieri MA, Nicholls CI (2008) Ecologically based pest management in agroforestry systems. In: Batish DR, Kohli RK, Jose S, Singh HP (eds) Ecological basis of agroforestry. CRC Press/Taylor and Francis Group, Boca Raton, pp 95–108Google Scholar
  3. ANAM (2003) Species composition of tree plantations in Panama. Autoridad Nacional del Ambiente, Panama CityGoogle Scholar
  4. Andrew NR, Hughes L (2005) Herbivore damage along a latitudinal gradient: relative impacts of different feeding guilds. Oikos 108:176–182. doi:10.1111/j.0030-1299.2005.13457.x CrossRefGoogle Scholar
  5. Arguedas M (2007) Plagas forestales en Costa Rica (CD-ROM). Centro de Desarrollo de Material Bibliográfico. Instituto Tecnológico de Costa Rica, CartagoGoogle Scholar
  6. Augsburger CK (1984) Light requirements of neotropical tree seedlings: a comparative study of growth and survival. J Ecol 72:777–795CrossRefGoogle Scholar
  7. Butterfield RP (1995) Promoting biodiversity: advances in evaluating native species for reforestation. For Ecol Manage 75:111–121. doi:10.1016/0378-1127(95)03535-I CrossRefGoogle Scholar
  8. Cabrera I, Segarra A (2008) A new gall-inducing species of holopothrips (Thysanoptera:Phlaeothripinae) from Tabebuia trumpet trees in the Caribbean region. Fla Entomol 91:232–236. doi:10.1653/0015-4040(2008)91[232:ANGSOH]2.0.CO;2 CrossRefGoogle Scholar
  9. Carpenter FL, Nichols JD, Sandi E (2004) Early growth of native and exotic trees planted on degraded tropical pasture. For Ecol Manage 196:367–378. doi:10.1016/j.foreco.2004.03.030 CrossRefGoogle Scholar
  10. Cates RG, Orians GH (1975) Successional status and the palatability of plants to generalized herbivores. Ecology 56:410–418CrossRefGoogle Scholar
  11. Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27:305–335. doi:10.1146/annurev.ecolsys.27.1.305 CrossRefGoogle Scholar
  12. Coley PD, Massa M, Lovelock CE, Winter K (2002) Effects of elevated CO2 on foliar chemistry of saplings of nine species of tropical tree. Oecologia 133:62–69. doi:10.1007/s00442-002-1005-6 CrossRefGoogle Scholar
  13. Cooper SM, Owen-Smith N (1985) Condensed tannins deter feeding by browsing ruminants in a South African savanna. Oecologia 67:142–146. doi:10.1007/BF00378466 CrossRefGoogle Scholar
  14. Cordero J, Barrance A, Boshier D (2003) Arboles de centroamérica: un manual para extensionistas. Oxford Forestry Institute (OFI) and Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Oxford, UK, and Turrialba, Costa RicaGoogle Scholar
  15. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas J, Poorter H (2003) Handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380. doi:10.1071/BT02124 CrossRefGoogle Scholar
  16. Craven D, Cedeño N, Mariscal E, Deago J, Wishnie MH, Hall JS (2011) Amelioration of growing conditions in a mixed species plantation of Terminalia amazonia and Nitrogen-fixing Dalbergia retusa. In: Montagnini F, Finney C (eds) Restoring degraded landscapes with native species in Latin America. Nova Science Publishers, New YorkGoogle Scholar
  17. Craven D, Braden D, Ashton MS, Berlyn GP, Wishnie M, Dent D (2007) Between and within-site comparisons of structural and physiological characteristics and foliar nutrient content of 14 tree species at a wet, fertile site and a dry, infertile site in Panama. For Ecol Manage 238:335–346. doi:10.1016/j.foreco.2006.10.030 CrossRefGoogle Scholar
  18. Dawson W, Burslem DFRP, Hulme PE (2008) Herbivory is related to taxonomic isolation, but not to invasiveness of tropical alien plants. Divers Distrib 15:141–147CrossRefGoogle Scholar
  19. Dominy NJ, Lucas PW, Wright SJ (2003) Mechanics and chemistry of rain forest leaves: canopy and understory compared. J Exp Bot 54:2007–2014. doi:10.1093/jxb/erg224 PubMedCrossRefGoogle Scholar
  20. Dominy NJ, Grubb PJ, Jackson RV, Lucas PW, Metcalfe DJ, Svenning JC, Turner IM (2008) In tropical lowland rain forests monocots have tougher leaves than dicots, and include a new kind of tough leaf. Ann Bot 101:1363–1377. doi:10.1093/aob/mcn046 PubMedCrossRefGoogle Scholar
  21. Ernest KA (1989) Insect herbivory on a tropical understory tree: effects of leaf age and habitat. Biotropica 21:194–199CrossRefGoogle Scholar
  22. Folgarait PJ, Marquis RJ, Ingvarsson P, Braker HE, Arguedas M (1995) Patterns of attack by insect herbivores and a fungus on saplings in a tropical tree plantation. Environ Entomol 24:1487–1494Google Scholar
  23. Fonseca CR (1994) Herbivory and the long-lived leaves of an Amazonian ant-tree. J Ecol 82:833–842CrossRefGoogle Scholar
  24. Gómez M, Zelaya Y (2003) Bombacopsis quinata: beneficios actuales y potenciales para pequeños productores y limitaciones políticas en su distribución natural. Briefing note. Spanish. Centro Agronómico Tropical de Investigación y Eseñanza, TurrialbaGoogle Scholar
  25. Holdridge LR (1967) Life zone ecology. Tropical Science Center, San JoséGoogle Scholar
  26. Howlett BE, Davidson DW (2001) Herbivory on planted dipterocarp seedlings in secondary logged forests and primary forests of Sabah, Malaysia. J Trop Ecol 17:285–302. doi:10.1017/S0266467401001195 CrossRefGoogle Scholar
  27. Janzen DH, Waterman PG (1984) A seasonal census of phenolic, fibre, and alkaloids in foliage of forest trees in Costa Rica: some factors influencing their distribution and relation to host selection by Sphingidae and Saturniidae. Biol J Linn Soc 21:439–454. doi:10.1111/j.1095-8312.1984.tb01605.x CrossRefGoogle Scholar
  28. Kitajima K, Poorter L (2010) Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytol 186:708–721. doi:10.1111/j.1469-8137.2010.03212.x PubMedCrossRefGoogle Scholar
  29. Kitajima K, Mulkey SS, Wright SJ (1997) Decline of photosynthetic capacity with leaf age in relation to leaf longevities for five tropical canopy tree species. Am J Bot 84:702–708PubMedCrossRefGoogle Scholar
  30. Kursar TA, Coley PS (2003) Convergence in defense syndrome of young leaves in tropical rainforests. Biochem Syst Ecol 31:929–949. doi:10.1016/S0305-1978(03)00087-5 CrossRefGoogle Scholar
  31. Labandeira CC, Wilf P, Johnson KR, Marsh F (2007) Guide to insect (and other) damage types on compressed plant fossils. Version 3.0. Smithsonian Institution, Washington, DCGoogle Scholar
  32. Lucas PW, Turner IM, Dominy NJ, Yamashita N (2000) Mechanical defenses to herbivory. Ann Bot 86:913–920CrossRefGoogle Scholar
  33. Lugo AE (1997) The apparent paradox of reestablishing species richness on degraded lands with tree monocultures. For Ecol Manage 99:9–19. doi:10.1016/S0378-1127(97)00191-6 CrossRefGoogle Scholar
  34. Maiorana VC (1981) Herbivory in sun and shade. Biol J Linn Soc 15:151–156. doi:10.1111/j.1095-8312.1981.tb00754.x CrossRefGoogle Scholar
  35. Marquis RJ (1984) Leaf herbivores decrease fitness of a tropical plant. Science 226:537–538. doi:10.1126/science.226.4674.537 PubMedCrossRefGoogle Scholar
  36. Marquis RJ, Diniz IR, Morais HC (2001) Patterns and correlates of interspecific variation in foliar insect herbivory and pathogen attack in Brazilian cerrado. J Trop Ecol 17:127–148. doi:10.1017/S0266467401001080 CrossRefGoogle Scholar
  37. Martínez-Garcia C, Peña V, Ricker M, Campos A, Howe HF (2005) Restoring tropical biodiversity: leaf traits predict growth and survival of late-successional trees in early-successional environments. For Ecol Manage 217:365–379. doi:10.1016/j.foreco.2005.07.001 CrossRefGoogle Scholar
  38. Moles A, Westoby M (2000) Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos 90:517–526. doi:10.1034/j.1600-0706.2000.900310.x CrossRefGoogle Scholar
  39. Montagnini F, Piotto D (2011) Mixed plantations with native trees on abandoned pasture lands: restoring productivity, ecosystem properties and services in a humid tropical site. In: Günter S, Stimm B, Weber M, Mosandl R (eds) Silviculture in the tropics. Springer, Berlin-New YorkGoogle Scholar
  40. Montagnini F, González E, Porras C (1995) Mixed and pure forest plantations in the humid Neotropics: a comparison of early growth, pest damage and establishment costs. Commonw For Rev 74:306–314Google Scholar
  41. Nabity PD, Zavala JA, DeLucia EH (2009) Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Ann Bot 103:655–663. doi:10.1093/aob/mcn127 PubMedCrossRefGoogle Scholar
  42. Nair KSS (2007) Tropical forest insect pests: ecology, impact, and management. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  43. Neumann-Cosel L, Zimmerman B, Hall J, van Breugel M, Elsenbeer H (2011) Soil carbon dynamics under young tropical secondary forests on former pastures—a case study from Panama. For Ecol Manage 261:1625–1633. doi:10.1016/j.foreco.2010.07.023 CrossRefGoogle Scholar
  44. Panama Canal Authority (2007) Data from Frijolito meteorological station: 1998 to 2007. http://striweb.si.edu/esp/meta_data/details_acp_rain15.htm. Accessed 15 Apr 2010
  45. Parrotta JA, Turnbull JW, Jones N (1997) Introduction - Catalyzing native forest regeneration on degraded tropical lands. For Ecol Manage 99:1–7. doi:10.1016/S0378-1127(97)00190-4 CrossRefGoogle Scholar
  46. Pérez R, Condit R (2010) Tree Atlas of Panama. http://ctfs.arnarb.harvard.edu/webatlas/maintreeatlas.php. Accessed 15 Apr 2010
  47. Piotto D, Craven D, Montagnini F, Alice F (2010) Silvicultural and economic aspects of pure and mixed native tree species plantations on degraded pasturelands in humid Costa Rica. New For 39:369–385. doi:10.1007/s11056-009-9177-0 CrossRefGoogle Scholar
  48. Rasband W (2003) Image J software 1.42. National Institutes of Health. Bethesda MD, USA. http://rsb.info.nih.gov/ij/. Accessed 15 Apr 2010
  49. Redondo-Brenes A, Montagnini F (2006) Growth, productivity, aboveground biomass, and carbon sequestration of pure and mixed native tree plantations in the Caribbean lowlands of Costa Rica. For Ecol Manage 232:168–178. doi:10.1016/j.foreco.2006.05.067 CrossRefGoogle Scholar
  50. Reich PB, Ellsworth DS, Walters MB (1998) Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: evidence from within and across species and functional groups. Funct Ecol 12:948–958. doi:10.1046/j.1365-2435.1998.00274.x CrossRefGoogle Scholar
  51. Salgado-Luarte C, Gianoli E (2010) Herbivory on temperate rainforest seedlings in sun and shade: resistance, tolerance and habitat distribution. PLoS ONE 5:e11460. doi:10.1371/journal.pone.0011460 PubMedCrossRefGoogle Scholar
  52. Sanson G, Read J, Aranwela N, Clissold F, Peeters P (2001) The measurement of leaf biomechanical properties in herbivory: opportunities, problems and procedures. Austral Ecol 26:535–546. doi:10.1046/j.1442-9993.2001.01154.x CrossRefGoogle Scholar
  53. Santana DLQ, Burckhardt D (2001) A new triozid pest (Hemiptera, Psylloidea, Triozidae) on ornamental Trumpet Trees (Tabebuia spp., Bignoniaceae). Rev Suisse de Zool 108:541–550Google Scholar
  54. Speight MR, Wylie FR (2001) Insect pests in tropical forestry. CABI, OxonGoogle Scholar
  55. Straus-Debenedetti S, Berlyn GP (1994) Leaf anatomical responses to light in five tropical Moraceae of different successional status. Am J Bot 81:1582–1591CrossRefGoogle Scholar
  56. Sullivan JJ (2003) Density-dependent shoot-borer herbivory increases the age of first reproduction and mortality of neotropical tree saplings. Oecologia 136:96–106. doi:10.1007/s00442-003-1233-4 PubMedCrossRefGoogle Scholar
  57. Unsicker SB, Mody K (2005) Influence of tree species and compass bearing on insect folivary of nine common tree species in the West African savanna. J Trop Ecol 21:227–231. doi:10.1017/20266467404002196 CrossRefGoogle Scholar
  58. van Breugel M, Hall JS (2008) Experimental design of the ‘Agua Salud’ Native Timber Species Plantation 2008. Unpublished Typescript Report. http://biogeodb.stri.si.edu/bioinformatics/sigeo/aguasalud/data/docs/Design_Native%20Species_Plantations_05052008.pdf. Accessed 15 Apr 2010
  59. van Breugel M, Hall JS, Craven DJ, Dent DH, Wishnie MH, Deago J, Mariscal E, Ibarra D, Cedeño N, Park A, Ashton MS (2011) Early growth and survival of 49 tropical tree species across sites differing in soil fertility and rainfall in Panama. For Ecol Manage 261:1580–1589. doi:10.1016/j.foreco.2010.08.019 CrossRefGoogle Scholar
  60. Vosso J (ed) (2004) Tropical tree seed manual. USDA Forest Service. http://www.rngr.net/Publications/ttsm. Accessed 15 Apr 2010
  61. Windsor DM (1990) Climate and moisture variability in a tropical forest: long-term records from Barro Colorado Island. Panama, Washington, DCGoogle Scholar
  62. Wishnie MH, Dent DH, Mariscal E, Deago J, Cedeno N, Ibarra D, Condit R, Ashton PMS (2007) Initial performance and reforestation potential of 24 tropical tree species planted across a precipitation gradient in the Republic of Panama. For Ecol Manage 243:39–49. doi:10.1016/j.foreco.2007.02.001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Gillian S. Paul
    • 1
  • Florencia Montagnini
    • 1
  • Graeme P. Berlyn
    • 1
  • Dylan J. Craven
    • 1
    • 2
  • Michiel van Breugel
    • 2
  • Jefferson S. Hall
    • 2
  1. 1.Yale School of Forestry and Environmental StudiesNew HavenUSA
  2. 2.Center for Tropical Forest ScienceSmithsonian Tropical Research InstituteBalboaRepublic of Panama

Personalised recommendations