New Forests

, Volume 42, Issue 2, pp 179–193 | Cite as

Patterns of genetic diversity that result from bottlenecks in Scots Pine and the implications for local genetic conservation and management practices in Bulgaria

  • Krassimir D. NaydenovEmail author
  • Michel K. Naydenov
  • Francine Tremblay
  • Alexander Alexandrov
  • Louis Daniel Aubin-Fournier


As one of the principal coniferous species of commercial importance in Bulgaria, Scots Pine has been subjected to strict management, which has posed a challenge for the conservation and management of its gene pool. In this study, we measured genetic diversity and population structure using 6 microsatellite loci in 12 populations from Bulgarian mountain ranges. Our analysis showed good intrapopulation divergence (18.22%; AMOVA) and genetic evidence of bottlenecks. “NJ-IAM” and “non-admixing” clusters divided the populations into 3 large groups. Our microsatellite analysis was consistent with the documented “mountain effect” influence on genetic diversity. Two methods—the Coalescent Bayesian model and M-stat analysis—implicated recent bottlenecks for all populations, suggesting that the genetic structure of Bulgarian Scots Pine was shaped over a long period (one thousand generations; i.e. 20,000 years) by the interaction of genetic and autoecological processes. Our results suggest that conservation and management practices should strive to maintain this genetic differentiation, specifically by emphasizing reforestation efforts with stocks from local provenances to avoid nonlocal introductions.


Nuclear microsatellite markers Pinussylvestris L. Bottleneck Effective population size Biogeography 



We thank Irena M. Naydenova and M. H. Longpré for their technical assistance. We are grateful to the staff of the Bulgarian forest service for their assistance with the plant material; the Ministry of Education and Science of Bulgaria for their financial support (CC-318/1993–1996); and the Fond KAZAROVI-Geneva (Switzerland) for a student grant to K. D. Naydenov during an internship at the University of Geneva (Department of Botany). We also wish to thank W. Parsons (University of Sherbrook) and BLUE PENCIL-SCIENCE (USA) for his careful revision of this manuscript. This study was funded by a post-doctoral grant to K. D. Naydenov from the “Chaire en aménagement forestier durable”, while other financial support was provided by a Natural Sciences and Engineering Research Council of Canada (NSERC) operating grant to F. Tremblay.


  1. Alexandrov A, Rafailov G et al (1988) Coniferous forest in Bulgaria. Zemizdat, Sofia, Bulgaria [in Bulgarian]Google Scholar
  2. Al-Rabab’ah MA, Williams CG (2004) An ancien bottleneck in the Lost Pines of central Texas. Mol Ecol 13:1075–1084PubMedCrossRefGoogle Scholar
  3. Auckland LD, Bui T et al (2002) Conifer microsatellite handbook. Corporate Press, Raleigh, NC, USAGoogle Scholar
  4. Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013–2029PubMedGoogle Scholar
  5. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Nat Acad Sci USA 98:4563–4568PubMedCrossRefGoogle Scholar
  6. Belkhir K (2002) GENETIX V. 4.01: a software for population genetics data analysis. Laboratoire Génome et populations, Université de Montpellier II, FranceGoogle Scholar
  7. Bennett KD, Tzedakis PC et al (1991) Quaternary refugia of north European trees. J Biogeogr 18:103–115CrossRefGoogle Scholar
  8. Bilgen BB, Kaya N (2007) Allozyme variations in six natural populations of Scots pine (Pinus sylvestris) in Turkey. Biologia (Bratislava) 62(6):697–703CrossRefGoogle Scholar
  9. Boys J, Cherry M et al (2005) Microsatellite analysis reveals genetically distinct populations of Red Pine (Pinus resinosa, Pinaceae). Am J Bot 92:833–841PubMedCrossRefGoogle Scholar
  10. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21(3):550–570CrossRefGoogle Scholar
  11. Chakraborty R, Li J (1992) Heterozygote deficiency, population substructure and their implications in DNA fingerprinting. Hum Genet 88:267–272PubMedCrossRefGoogle Scholar
  12. Corander J, Marttinen P (2006) Bayesian identification of admixture events using multi-locus molecular markers. Mol Ecol 15:2833–2843PubMedCrossRefGoogle Scholar
  13. Corander J, Tang J (2007) Bayesian analysis of population structure based on linked molecular information. Math Biosci 205:19–31PubMedCrossRefGoogle Scholar
  14. Corander J, Gyllenberg M et al (2006a) Bayesian unsupervised classification framework based on stochastic partitions of data and a parallel search strategy. (submitted to J Statist Comput Simulation)Google Scholar
  15. Corander J, Gyllenberg M et al (2006b) Bayesian model learning based on a parallel MCMC strategy. Stat Comput 16:355–362CrossRefGoogle Scholar
  16. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  17. Dayanandan S, Dole J et al (1999) Population structure delineated with microsatellite markers in fragmented populations of a tropical tree, Carapa guianensis (Meliaceae). Mol Ecol 8:1585–1592PubMedCrossRefGoogle Scholar
  18. Dobrinov I (1960) Scots Pine ecoform investigation in Bulgaria. Ph. D. Thesis of forest genetic, selection and tree breeding. University of Forestry, Sofia, Bulgaria [in Bulgarian]Google Scholar
  19. Dobrinov I (1965) Corelation between the growth and seeds origin of Scots pines in Bulgaria. For Manag (Bulgaria) 5:16–19 [in Bulgarian]Google Scholar
  20. Dobrinov I, Gagov V (1970) Heritability and correlation between the cone, seed and growth characteristics of Scots Pine. Nauchni trudove na VLTI, Sofia (Bulgaria), XVIII, 37–46 [in Bulgarian]Google Scholar
  21. Dobrinov I, Kalinkov V (1968) Investigation of Scots Pine growth in provenance tests—first results. Conferencia po sluchai 50 godini Velika Oktomvriska Revolucia, Sofia, Bulgaria, pp. 119–129 [in Bulgarian]Google Scholar
  22. Dobrinov I, Kalinkov V (1977) Growth characteristics of Scots Pine in provenance tests. Nauchni trudove na VLTI, Sofia (Bulgaria), XXII, 31–38 [in Bulgarian]Google Scholar
  23. Dobrinov I, Doykov G et al (1982) Forest genetic pool in Bulgaria. Zemizdat, Sofia, Bulgaria [in Bulgarian]Google Scholar
  24. Efron B, Tibshirani R (1998) The problem of regions. Ann Stat 26:1687–1718CrossRefGoogle Scholar
  25. Excoffier L, Schneider S et al (2002) ARLEQUIN V.2.001: a software for population genetics data analysis. Department of Anthropology and Ecology, University of Geneva, SwitzerlandGoogle Scholar
  26. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791CrossRefGoogle Scholar
  27. Fowler DP, Morris RW (1977) Genetic diversity in red pine evidence for low genetic heterozygosity. Can J For Res 7:343–347CrossRefGoogle Scholar
  28. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite DNA. Mol Ecol 10:305–318PubMedCrossRefGoogle Scholar
  29. Holmes S (2003) Bootstrapping phylogenetic trees: theory and methods. Stat Sci 18:241–255CrossRefGoogle Scholar
  30. Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738PubMedGoogle Scholar
  31. Kostov K, Alexandrov A et al (1986) Scots Pine provenance growth and resistance. For Manag (Bulgaria) 4:3–11 [in Bulgarian]Google Scholar
  32. Lian C, Miwa M et al (2000) Isolation and characterization of microsatellite loci from the Japanese Red Pine, Pinus densiflora. Mol Ecol 9:1171–1193CrossRefGoogle Scholar
  33. Morgante M, Felice N et al (1998) Analysis of hypervariable chloroplast microsatellites in Pinus halepensis reveals a dramatic genetic bottleneck. In: Karp A, Isaac PG, Ingram DS (eds) Molecular tools for screening biodiversity. Chapman and Hall, London, pp 407–412Google Scholar
  34. Naydenov KD, Tremblay FM et al (2005) Structure of Pinus sylvestris L. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis: provenance tests. Biochem Syst Ecol 33:1226–1246CrossRefGoogle Scholar
  35. Naydenov KD, Senneville S et al (2007) Glacial vicariance in Eurasia: mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor. BMC Evol Biol 7:233PubMedCrossRefGoogle Scholar
  36. Neet-Sarqueda C (1994) Genetic differentiation of Pinus sylvestris L. and Pinus mugo Aggr. populations in Switzerland. Silvae Genet 43:207–215Google Scholar
  37. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292CrossRefGoogle Scholar
  38. Nei M (1975) Molecular population genetics and evolution. North-Holland, Amsterdam, NetherlandsGoogle Scholar
  39. Ohta T, Kimura M (1973) A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res 22:201–204CrossRefGoogle Scholar
  40. Oline DK, Mitton JB et al (2000) Population and subspecific genetic differentiation in the Foxtail pine (Pinus balfouriana). Evolution 54:1813–1819PubMedGoogle Scholar
  41. Paradis E (2006) Analysis of phylogenetics and evolution with R. Springer, New York, USAGoogle Scholar
  42. Peakall R, Smouse PE (2006) GENALEX V.6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  43. Pritchard JK, Stephens M et al (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  44. R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  45. Robledo-Arnuncio JJ, Collada C et al (2005) Genetic structure of montane isolates of Pinus sylvestris L. in a Mediterranean refugial area. J Biogeogr 32:595–605CrossRefGoogle Scholar
  46. Rudin D, Eriksson G et al (1974) Studies of allele frequencies and inbreeding in Scots Pine populations by the aid of the isozyme technique. Silvae Genet 23:10–13Google Scholar
  47. Shannon CE (1948a) A mathematical theory of communication. Bell Syst Tech J 27:379–423Google Scholar
  48. Shannon CE (1948b) A mathematical theory of communication. Bell Syst Tech J 27:623–656Google Scholar
  49. Sinclair WT, Morman JD et al (1998) Multiple origins for Scots Pine (Pinus sylvestris L.) in Scotland: evidence from mitochondrial DNA variation. Heredity 80:233–240CrossRefGoogle Scholar
  50. Slatkin M (1985) Gene flow in natural populations. Ann Rev Ecol Syst 16:393–430CrossRefGoogle Scholar
  51. Szweykowski J, Prus-Glowacki W et al (1994) The genetic structure of Scots Pine (Pinus sylvestris L.) population from the top of Szczeliniec Wielki Mt., Central Sudetes. Acta Societatis Botanicorum Poloniae 63:315–324 [in Polish]Google Scholar
  52. Tallmon DA, Beaumont MA et al (2004) Effective population size estimation using approximate Bayesian computation. Genetics 167:977–988PubMedCrossRefGoogle Scholar
  53. Tekezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389–399Google Scholar
  54. Waters ER, Schaal B (1991) No variation is detected in the chloroplast genome of Pinus torreyana. Can J For Res 21:1832–1835CrossRefGoogle Scholar
  55. Weaver W, Shannon CE (1949) The mathematical theory of communication. University of Illinois, Urban, IL, USAGoogle Scholar
  56. Williams CG, Elsik CG et al (2000) Microsatellite analysis of Pinus taeda L. in Zimbabwe. Heredity 84:261–268PubMedCrossRefGoogle Scholar
  57. Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420CrossRefGoogle Scholar
  58. Zhelev P (1992) Ecolo-biological and selection—genetic Scots Pine investigations from the Rhodope mountains. Ph.D. Thesis of forest genetic, selection and tree breeding. University of Forestry, Sofia, Bulgaria. [in Bulgarian]Google Scholar
  59. Zhelev P, Longauer R et al (1994) Genetic variation of the indigenous Scots Pine (Pinus sylvestris L.) populations from the Rhodope mountains. For Sci (Bulgaria) 3:68–76 [in Bulgarian]Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Krassimir D. Naydenov
    • 1
    Email author
  • Michel K. Naydenov
    • 1
    • 2
    • 3
  • Francine Tremblay
    • 1
  • Alexander Alexandrov
    • 4
  • Louis Daniel Aubin-Fournier
    • 1
  1. 1.Chaire CRSNG-UQAT-UQAM en aménagement forestier durable, Centre d’étude de la forêtUniversité du Québec en Abitibi-TémiscamingueRouyn-NorandaCanada
  2. 2.Lycee de langue francaise “Alphonse de Lamartine”SofiaBulgarie
  3. 3.Frenska Ezikova Gimnazia Bulgaria. lycee N9SofiaBulgarie
  4. 4.Forest Research Institute, Bulgarian Academy of ScienceSofiaBulgaria, Europe

Personalised recommendations