New Forests

, Volume 41, Issue 1, pp 13–39 | Cite as

Can native tree species plantations in Panama compete with Teak plantations? An economic estimation

  • Verena C. GriessEmail author
  • Thomas Knoke


Panama has the highest rate of change in the area of primary forests within Central America. However, to meet growing timber demands, it became popular over the last decades to establish plantations made up of foreign species such as Tectona grandis or Pinus spp. In the majority of the cases the species used are well known; their characteristics such as growth performance have been reviewed intensively and can be accessed in numerous publications. Characteristics of Panama’s native tree species of commercial relevance such as Hieronyma alchorneoides, Swietenia macrophylla and Terminalia amazonia are largely unknown and have been investigated within the study at hand. Using valuation methods of financial mathematics, the competitive position of these three indigenous species was assessed, the results compared to those of T. grandis stands in the same area. Land costs and taxes were not considered, as they would be the same for all species. Financial estimates for indigenous species will enlarge their acceptance for use in reforestation and plantation projects. Using the NPV method and applying the standard scenario, the profitability of T. grandis is lower than that of T. amazonia and S. macrophylla and lies only slightly above the profitability calculated for H. alchorneoides. This result clearly indicates that the investigated native tree species are comparable with T. grandis regarding their economic profitability. Besides its ecological impact, growing native tree species is now also economically legitimate. By calculating land expectation values for all tree species, ideal rotation lengths could be determined. For these species, considerable flexibility exists regarding the optimal rotation length.


Reforestation Financial analysis Land expectation value Net present value Growth Yield Profitability 



The presented study is part of the project “Bioeconomic modelling and optimization of forest stands: Towards silvicultural economics” KN 586/7-1 funded by the German Research Foundation (DFG). The authors wish to thank Mrs. Kristin Dzurella for the manuscript language editing and three anonymous reviewers for valuable suggestions.


  1. Alam M, Furukawa Y, Harada K (2010) Agroforestry as a sustainable landuse option in degraded tropical forests: a study from Bangladesh. Environ Dev Sustain 12:147–158CrossRefGoogle Scholar
  2. Benitez PC, McCallum I, Obersteiner M, Yamagata Y (2007) Global potential for carbon sequestration: Geographical distribution, country risk and policy implications. Ecol Econ 60:572–583CrossRefGoogle Scholar
  3. Boyd E (1998) A compilation of forest statistics for selected African and Latin American countries. Oxford Forestry Institute, United KingdomGoogle Scholar
  4. Brazee R, Mendelsohn R (1988) Timber harvesting with fluctuating prices. For Sci 34:359–372Google Scholar
  5. Calvo-Alvarado JC, Arias D, Richter DD (2007) Early growth performance of native and introduced fast growing tree species in wet to sub-humid climates of the Southern region of Costa Rica. For Ecol Manag 242:227–235CrossRefGoogle Scholar
  6. Camacho Y (2008) Oral communicationGoogle Scholar
  7. Clark (now Ajani) J (2001) The global wood market, prices and plantation investment: an examination drawing on the Australiaan experience. Environ Conserv 23:58–64Google Scholar
  8. Cruz Madariaga GE (2003) Untersuchungen zur Überführung von südchilenischen Nothofagus-Pumilio-Naturwäldern in naturnahe Wirtschaftswälder. Dissertation, Universität FreiburgGoogle Scholar
  9. Cubbage F, Mac Donagh P, Sawinsk J, Rubilar R, Donoso P, Ferreira A, Hoeflich V, Morales Olmos V, Ferreira G, Balmelli G, Siry J, Noemi Báez M, Alvarez J (2007) Investment returns for selected plantation and native forests in South America and the Southern United States. New For 33:237–255Google Scholar
  10. Evans J, Turnbull J (2004) Plantation forestry in the Tropics. 3. Ausgabe. Oxford University Press, New YorkGoogle Scholar
  11. FAO (Food and Agriculture Organisation of the United States) (2005) Countries—forest facts by country ( Rome
  12. Faustmann M (1849) Calculation of the value which forestland and immature stands possess for forestry. J For Econ 1(1):7–44 (1995)Google Scholar
  13. Finegan B (1992) The management potential of neotropical secondary lowland rain forest. For Ecol Manag 47:295–322CrossRefGoogle Scholar
  14. Günter S, Weber M, Aguirre N, Stimm B, Mosandl R (2008) Reforestation of abandoned pastures: silvicultural means to accelerate forest recovery and biodiversity. In: Beck E (ed) Gradients in a tropical mountain ecosystem of ecuador. Springer, Berlin, pp 431–441Google Scholar
  15. Gutierrez RR, Diaz HI (1999) Memoria de las estadísticas de los recursos forestales de Panama. Workshop for Forest Resources Assessment ProgrammeGoogle Scholar
  16. Hartley M (2002) Rationale and methods for conserving biodiversity in plantation forests. For Ecol Manag 155:81–95CrossRefGoogle Scholar
  17. Heidingsfelder A, Knoke T (2004) Douglasie versus Fichte. Ein betriebswirtschaftlicher Leistungsvergleich auf der Grundlage des Provenienzversuches Kaiserslautern. J.D. Sauerländer Verlag, Frankfurt am MainGoogle Scholar
  18. INRENARE (Institute for the Management of Renewable Natural Resources) (1990) Plan de accion forestal de Panama, Documento principal. Instituto Nacional de Recursos Naturales RenovablesGoogle Scholar
  19. ITTO Tropical Timber Market (TTM) Report (1998–2010) Output of the ITTO Market Information Service (MIS), Japan.
  20. Knoke T (2008) Mixed forests and finance–Methodological approaches. Ecol Econ 65:590–601CrossRefGoogle Scholar
  21. Knoke T, Hahn A (2007) Baumartenvielfalt und Produktionsrisiken: Ein Forschungseinblick- und Ausblick. Schweiz Z Forstwesen 158:312–322CrossRefGoogle Scholar
  22. Knoke T, Wurm J (2006) Mixed forests and a flexible harvest policy: a problem for conventional risk analysis? Eur J For Res 125:303–315Google Scholar
  23. Knoke T, Stimm B, Ammer C, Moog M (2005) Mixed forests reconsidered: a forest economics contribution on an ecological concept. For Ecol Manag 213:102–116CrossRefGoogle Scholar
  24. Kollert W, Lagan P (2006) Do certified tropical logs fetch a market premium? A comparative price analysis from Sabah, Malaysia. For Policy Econ 9:862–868Google Scholar
  25. Kollmansberger P (2006) Forest investment in Panama – Long term investment with real values. (, #39)
  26. Lamb FB (1966) Mahagony of tropical america. It’s ecology and management. The University of Michigan Press, Ann Arbor, p p 220Google Scholar
  27. Lamb D (1998) Large-scale ecological restoration of degraded tropical forest lands: the potential role of timber plantations. Restor Ecol 6:271–279CrossRefGoogle Scholar
  28. Lamprecht H (1989) Waldbau in den Tropen. Die tropischen Waldökosysteme und ihre Baumarten; Möglichkeiten und Methoden zu ihrer nachhaltigen Nutzung. Hamburg und Berlin, Verlag Paul PareyGoogle Scholar
  29. Markowitz H (1952) Portfolio selection. J Finance 7:77–91CrossRefGoogle Scholar
  30. Mayhew JE, Newton AC (1998) The silviculture of mahogany. CABI Publishing, OxonGoogle Scholar
  31. Mora-Chacón FA, Gutierrez-Leitón M, Orozco C, Brenes, R (2002) Ecosistemas forestales de bosque seco tropical: investigaciones y resultados en Mesoamérica. Editorial Heredia, Universidad Nacional/INISEFOR, CR, pp 87–100Google Scholar
  32. Nichols JD, Bristow M, Vanclay JK (2006) Mixed-species plantations: prospects and challenges. For Ecol Manag 233:383–390CrossRefGoogle Scholar
  33. Pandey D, Ball J (1998) The role of industrial plantations in future global fiber supplies. Unasylva (FAO) 49:37–43Google Scholar
  34. Paul C (2008) Vergleichende Untersuchungen zur Diversität des Unterstandes in Teak- (Tectona grandis) und Mischplantagen einheimischer Baumarten in West-Panama. Diploma thesis, Technische Universität München, GermanyGoogle Scholar
  35. Pérez D, Kanninen M (2005) Effect of thinning on stem form and wood characteristics of teak (Tectona grandis) in a humid tropical site in Costa Rica. Silva Fennica 39:217–225Google Scholar
  36. Petit B, Montagnini F (2006) Growth in pure and mixed plantations of tree species used in reforesting rural areas of the humid region of Costa Rica, Central America. For Ecol Manag 233:338–343CrossRefGoogle Scholar
  37. Piotto D, Montagnini F, Ugalde L, Kanninen M (2003) Performance of forest plantations in small and medium-sized farms in the Atlantic lowlands of Costa Rica. For Ecol Manag 175:195–204CrossRefGoogle Scholar
  38. Piotto D, Víquez E, Montagnini F, Kanninen M (2004a) Pure and mixed forest plantations with native species of the dry tropics of Costa Rica: a comparison of growth and productivity. For Ecol Manag 190:359–372CrossRefGoogle Scholar
  39. Piotto D, Montagnini F, Kanninen M, Ugalde L, Viquez E (2004b) Forest plantations in Costa Rica and Nicaragua: performance of species and preferences of farmers. J Sustain For 18(4):59–77Google Scholar
  40. Posch B, Wegener G, Grosser D, Wagner L (2004) Physikalische und mechanische Untersuchungen an Teakholz (Tectona grandis L.f.) aus Plantagen in Panama. Eur J Wood Wood Prod 62:31–35CrossRefGoogle Scholar
  41. Quesada Mateo CA (1990) Estrategia de conservación para el desarrollo sostenible de Costa Rica. Ministerio de Recursos Naturales, Energía y Minas. Servicios Litográficos San José (Costa Rica)Google Scholar
  42. Redondo-Brenes A, Montagnini F (2006) Growth, productivity, aboveground biomass, and carbon sequestration of pure and mixed native tree plantations in the Caribbean lowlands of Costa Rica. For Ecol Manag 232:168–178CrossRefGoogle Scholar
  43. Rijsjdijk JF, Laming PB (1994) Physical and related properties of 145 timbers. Kluwer, DordrechtGoogle Scholar
  44. Sagl W (1995) Bewertung in Forstbetrieben. Blackwell Wissenschaftsverlag. Wien, BerlinGoogle Scholar
  45. Simmons C, Walker R, Wood C (2002) Tree planting by small producers in the tropics: a comparative study of Brazil and Panama. Agrofor Syst 56:89–105CrossRefGoogle Scholar
  46. Solorzano-Soto R (1995) Breve diagnóstico y soluciones de corto plazo al sector forestal. Notas Técnicas y Económicas 7: 10. Centro Científico Tropical, CRGoogle Scholar
  47. Thommen J-P, Achleitner A-K (2009) Allgemeine Betriebswirtschaftslehre–Umfassende Einführung aus managementorientierter Sicht, 6th edn. Gabler, WiesbadenGoogle Scholar
  48. USDA Forest Service, Center For Wood Anatomy Research (2010) Technology transfer, Fact sheets.
  49. Worldwide Bioclimatic Classification System (1996–2009) S. Rivas-Martinez, S. Rivas-Saenz, Phytosociological Research Center, Spain.

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute of Forest ManagementCenter of Life and Food Sciences Weihenstephan, Technische Universität MünchenFreisingGermany

Personalised recommendations