New Forests

, Volume 37, Issue 3, pp 313–331 | Cite as

Field performance of Pinus halepensis planted in Mediterranean arid conditions: relative influence of seedling morphology and mineral nutrition

  • Juan A. Oliet
  • Rosa Planelles
  • Francisco Artero
  • Rosario Valverde
  • Douglass F. Jacobs
  • Maria L. Segura
Article

Abstract

In Mediterranean arid regions, relatively small planting stock has traditionally been used in an attempt to reduce drought susceptibility, though few studies have examined influences of initial seedling morphology and nutrition on long-term plantation establishment. We fertilized Pinus halepensis Mill. seedlings in the nursery with controlled release fertilizer (CRF) varying in formulations and rates; 9-13-18 and 17-10-10 (N-P-K) formulations at 3, 5 and 7 g l−1 substrate plus an unfertilized control and we evaluated growth and survival 7 years after planting in arid conditions in Almería province, southeast Spain. Interactions between initial height and fertilizer treatments occurred during the first 3 years; initial size advantages of specific fertilizer treatments (7 g l−1 of 9-13-18 and 17-10-10 at 3 g l−1) persisted after 7 years. The largest and most nutrient-rich seedlings from 9-13-18 at 7 g l−1 (41.0 cm tall, 4.4 mg of P per g of root tissue at time of planting) exhibited the highest survival after 7 years (79%), while survival declined to 42% for non-fertilized plants (12.9 cm tall and 0.6 mg of P per g of root tissue). Initial seedling morphological parameters were most consistently correlated with field performance. Root P concentration was the nutrient variable most closely related to survival. Our data emphasizes importance of longer-term experiments to accurately assess influences of nursery treatments on field responses, particularly in arid areas. We suggest that larger seedlings with greater nutrient reserves than are currently being used should be incorporated into Mediterranean plantations.

Keywords

Aleppo pine Fertilization Forest restoration Nitrogen Phosphorus Reforestation 

References

  1. Barbera GG, Martinez-Fernandez F, Alvarez-Rogel J, Albaladejo J, Castillo V (2005) Short- and intermediate-term effects of site and plant preparation techniques on reforestation of a Mediterranean semiarid ecosystem with Pinus halepensis Mill. New For 29(2):177–198. doi:10.1007/s11056-005-0248-6 Google Scholar
  2. Bigg WL, Schalau JW (1990) Mineral nutrition and the target seedling. In: Target seedling symposium. General Technical Report USDA Forest Service, pp 139–158Google Scholar
  3. Birchler T, Rose R, Royo A, Pardos M (1998) La planta ideal: revisión del concepto, parámetros definitorios e implementación práctica. Invest Agr Sist Recur For 7(1–2):109–121Google Scholar
  4. Cain MD, Barnett JP (1996) An 8-year field comparison of naturally seeded to planted container Pinus taeda, with and without release. Can J Res 26(7):1237–1247. doi:10.1139/x26-138 CrossRefGoogle Scholar
  5. Cornelissen JHC, Werger MJA, Castro-Díez P, Van Rheenen JWA, Rowland AP (1997) Foliar nutrients in relation to growth, allocation and leaf traits in seedlings of a wide range of woody plant species and types. Oecologia 111(4):460–469. doi:10.1007/s004420050259 CrossRefGoogle Scholar
  6. Doménech JM (1999) Análisis multivariante: modelos de regresión. UD 10 Análisis de la supervivencia. Universitat Autònoma de Barcelona. Laboratori d’Estadídtica Aplicada i de Modelització. Ed. Signo, BarcelonaGoogle Scholar
  7. European Community Council (2000) DIRECTIVA 1999/105/CE DEL CONSEJO de 22 de diciembre de 1999 sobre la comercialización de materiales forestales de reproducción Diario Oficial de las Comunidades Europeas de 15.1.2000, pp 17–40Google Scholar
  8. Folk RS, Grossnickle S (2000) Stock-type patterns of phosphorus uptake, retranslocation, net photosynthesis and morphological development in interior spruce seedlings. New For 19(1):27–49. doi:10.1023/A:1006618312161 Google Scholar
  9. Gil L, Díaz-Fernández PM, Jiménez MP, Roldán M, Alía R, Agúndez D, de Miguel y del Angel J, Martín S, de Tuero y Reina M (1996) Las regiones de procedencia de Pinus halepensis Mill. en España. Organismo Autónomo Parques NacionalesGoogle Scholar
  10. Green TH, Mitchell RJ (1992) Effects of nitrogen on the response of loblolly pine to water stress. I. Photosynthesis and stomatal conductance. New Phytol 122:627–633Google Scholar
  11. Grossnickle SC (2000) Ecophysiology of northern spruce species: the performance of planted seedlings. NRC Research Press, OttawaGoogle Scholar
  12. Haase DL, Rose R (1993) Soil moisture stress induces transplant shock in stored and unstored 2 + 0 Douglas-Fir seedlings of varying root volumes. For Sci 39(2):275–294CrossRefGoogle Scholar
  13. Haase DL, Rose R, Trobaugh J (2006) Field performance of three stock sizes of Douglas-Fir container seedlings grown with slow-release fertilizer in the nursery growing medium. New For 31(1):1–24. doi:10.1007/s11056-004-5396-6 Google Scholar
  14. Imo M, Timmer VR (1999) Vector competition analysis of black spruce seedlings responses to nutrient loading and vegetation control. Can J Res 29(4):474–486. doi:10.1139/cjfr-29-4-474 CrossRefGoogle Scholar
  15. Ingestad T, Kahr M (1985) Nutrition and growth of coniferous seedlings at varied relative addition rate. Physiol Plant 65(2):109–116. doi:10.1111/j.1399-3054.1985.tb02368.x CrossRefGoogle Scholar
  16. Irwin KM, Duryea ML, Stone EL (1998) Fall-applied nitrogen improves performance of 1–0 slash pine nursery seedlings after outplanting. S J Appl For 22:111–116Google Scholar
  17. Jacobs DF, Ross-Davis AL, Davis AS (2004) Establishment success of conservation tree plantations in relation to silvicultural practices in Indiana, USA. New For 28(1):23–36. doi:10.1023/B:NEFO.0000031329.70631.d0 Google Scholar
  18. Jose S, Merritt S, Ramsey CL (2003) Growth, nutrition, photosynthesis and transpiration responses of longleaf pine seedlings to light, water and nitrogen. For Ecol Manage 180(1–3):335–344. doi:10.1016/S0378-1127(02)00583-2 CrossRefGoogle Scholar
  19. Lamhamedi MS, Bernier PY, Hébert C (1997) Effect of shoot size on the gas exchange and growth of containerized Picea mariana seedlings under different watering regimes. New For 13(1–3):209–223. doi:10.1023/A:1006586325524 Google Scholar
  20. Landis TD (1989) Mineral nutrients and fertilization. In: Landis TD, Tinus RW, McDonald SE, Barnett JP (eds) The container tree nursery manual, vol 4. Agriculture handbook 674. Forest Service. U.S. Department of Agriculture, pp 1–70Google Scholar
  21. Landis TD, Van Steenis E (2004) Macronutrients. Phosphorus. In: Forest Nursery Notes. Summer 2004. USDA Forest Service. Pacific Northwest Section. R6-CP-TP-07-04, pp 6–14Google Scholar
  22. Larsen HS, South DB, Boyer JM (1986) Root growth potential, seedling morphology and bud dormancy correlate with survival of loblolly pine seedlings. Tree Physiol 1:253–263PubMedGoogle Scholar
  23. Larsen HS, South DB, Boyer JN (1988) Foliar nitrogen content at lifting correlates with early growth of loblolly pine seedlings from twenty nurseries. S J Appl For 12(3):181–185Google Scholar
  24. MAPA (1989) Mapa de suelos. Escala 1:100.000. Carboneras (1046) ICONA. Universidad de GranadaGoogle Scholar
  25. Marschner H (1995) Mineral nutrition of higher plants. Academic Press, LondonGoogle Scholar
  26. Navarro R, Villar-Salvador P, del Campo A (2006) Morfología y establecimiento de los plantones. In: Cortina J, Peñuelas JL, Puértolas J, Savé J, Vilagrosa A (eds) Calidad de planta forestal para la restauración en ambientes mediterráneos degradados. Estado actual de conocimientos. Organismo Autónomo Parques Nacionales, Ministerio de Medio Ambiente, Madrid, pp 67–88Google Scholar
  27. Ne’eman G, Trabaud L (2000) Ecology, biogeography and management of Pinus halepensis and P. brutia forest ecosystems in the Mediterranean Basin. Backhuys Publishers, The NetherlandsGoogle Scholar
  28. Oliet J, Planelles R, López Arias M, Artero F (1997) Efecto de la fertilización en vivero sobre la supervivencia en plantación de Pinus halepensis. Cuad SECF 4:69–80Google Scholar
  29. Oliet J, Segura ML, Martin F, Blanco E, Serrada R, López Arias M, Artero F (1999) Los fertilizantes de liberación controlada lenta aplicados a la producción de planta forestal de vivero. Efecto de dosis y formulaciones sobre la calidad de Pinus halepensis Mill. Invest Agr Sist Recur For 8(1):207–228Google Scholar
  30. Oliet J, Planelles R, López Arias M, Artero F (2000) Efecto de la fertilización en vivero y del uso de protectores en plantación sobre la supervivencia y el crecimiento durante seis años de una repoblación de Pinus halepensis. Cuad SECF 10:69–77Google Scholar
  31. Oliet J, Planelles R, Segura ML, Artero F, Jacobs DF (2004) Mineral nutrition and growth of containerized Pinus halepensis seedlings under controlled-release fertilization. Sci Hortic (Amsterdam) 103(1):113–129. doi:10.1016/j.scienta.2004.04.019 CrossRefGoogle Scholar
  32. Oliet J, Planelles R, Artero F, Jacobs D (2005) Nursery fertilization and tree shelters affect long-term field response of Acacia salicina Lindl. Planted in Mediterranean semiarid conditions. For Ecol Manage 215(1–3):339–351. doi:10.1016/j.foreco.2005.05.024 CrossRefGoogle Scholar
  33. Peñuelas J, Ocaña L (1996) Cultivo de plantas forestales en contenedor. MAPA. Mundi Prensa, MadridGoogle Scholar
  34. Puértolas J, Gil L, Pardos JA (2003) Effects of nutritional status and seedling size on field performance of Pinus halepensis planted on former arable land in the Mediterranean basin. Forestry 76(2):159–168. doi:10.1093/forestry/76.2.159 CrossRefGoogle Scholar
  35. Querejeta JI, Roldán A, Albaladejo J, Castillo V (2001) Soil water availability improved by site preparation in a Pinus halepensis afforestation under semiarid climate. For Ecol Manage 149(1–3):115–128. doi:10.1016/S0378-1127(00)00549-1 CrossRefGoogle Scholar
  36. Querejeta JI, Barberá GG, Granados A, Castillo VM (2008) Afforestation method affects the isotopic composition of planted Pinus halepensis in a semiarid region of Spain. For Ecol Manage 254(1):56–64. doi:10.1016/j.foreco.2007.07.026 CrossRefGoogle Scholar
  37. Rook DA (1991) Seedling development and physiology in relation to mineral nutrition. In: van den Driessche R (ed) Mineral nutrition in conifer seedlings. CRC Press, Boca Raton, pp 86–112Google Scholar
  38. Rose R, Ketchum JS (2003) Interaction of initial seedling diameter, fertilization and weed control on Douglas-Fir growth over the first four years after planting. Ann Sci 60(7):625–635. doi:10.1051/forest:2003055 CrossRefGoogle Scholar
  39. Roth BE, Newton M (1996) Survival and growth of Douglas-Fir relating to weeding, fertilization and seed source. West J Appl For 11(2):62–69Google Scholar
  40. Royo A, Gil L, Pardos JA (2001) Effect of water stress conditioning on morphology, physiology and field performance of Pinus halepensis Mill. seedlings. New For 21(2):127–140. doi:10.1023/A:1011892732084 Google Scholar
  41. Ruiz de la Torre J (1990) Mapa forestal de España. Hoja 6-11 (Almería). Memoria. MAPA-ICONA, MadridGoogle Scholar
  42. Sit V (1995) Analyzing ANOVA Designs. Biom. Info. Hand. 5. Res. Br., B.C. Min. For., Victoria, B.C. Work. Pap. 07/1995Google Scholar
  43. South DB (2000) Planting morphologically improved pine seedlings to increase survival and growth. Forestry and wildlife series No. 1. Alabama Agricultural Experiment Station, Auburn UniversityGoogle Scholar
  44. South DB, Mitchell RJ (1999) Determining the “optimum” slash pine seedling size for use with four levels of vegetation management on a flatwoods site in Georgia, U.S.A. Can J Res 29(7):1039–1046. doi:10.1139/cjfr-29-7-1039 CrossRefGoogle Scholar
  45. South DB, Skinner MF (1998) Nursery stock and field fertiliser application affect early performance of Pinus radiata on a phosphorous deficient site in Northland. N Z J For Sci 28(3):361–372Google Scholar
  46. South DB, Zwolinsky JB (1997) Transplant stress index: a proposed method of quantifying planting check. New For 13(1–3):315–328. doi:10.1023/A:1006546627342 Google Scholar
  47. South DB, Rakestraw JL, Lowerts GA (2001) Early gains from planting large diameter seedlings and intensive management are additive for loblolly pine. New For 22(1–2):97–110. doi:10.1023/A:1012097924355 Google Scholar
  48. South DB, Harrisa SW, Barnett JP, Hainds MJ, Gjerstad DH (2005) Effect of container type and seedling size on survival and early height growth of Pinus palustris seedlings in Alabama, USA. For Ecol Manage 204(2–3):385–398. doi:10.1016/j.foreco.2004.09.016 CrossRefGoogle Scholar
  49. Thompson B (1985) Seedling morphological evaluation. What can you tell by looking. In: Duryea ML (ed) Evaluating seedling quality: principles, procedures and predictive abilities of major test. Forest Research Laboratory, Oregon State University, pp 59–69Google Scholar
  50. Timmer VR, Armstrong G (1987) Diagnosing nutritional status of containerized tree seedlings: comparative plant analysis. Soil Sci Soc Am J 51:1082–1086Google Scholar
  51. Trubat R, Cortina J, Vilagrosa A (2008) Short-term nitrogen deprivation increases field performance in nursery seedlings of Mediterranean woody species. J Arid Environ 72:879–890. doi:10.1016/j.jaridenv.2007.11.005 CrossRefGoogle Scholar
  52. Tuttle CL, South DB, Golden MS, Meldahl RS (1988) Initial Pinus taeda seedling height relationships with early survival and growth. Can J Res 18(7):867–871. doi:10.1139/x88-133 CrossRefGoogle Scholar
  53. van den Driessche R (1980) Effects of nitrogen and phosphorous fertilization on Douglas-Fir nursery growth and survival after outplanting. Can J Res 10(1):65–70. doi:10.1139/x80-011 CrossRefGoogle Scholar
  54. van Den Driessche R (1985) Late-season fertilization, mineral nutrient reserves, and retranslocation in planted Douglas-Fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings. For Sci 31:485–496Google Scholar
  55. Van Den Driessche R (1987) Importance of current photosyntate to new root growth in planted conifer seedlings. Can J Res 17:776–782. doi:10.1139/x87-124 CrossRefGoogle Scholar
  56. Villar-Salvador P (2003) Importancia de la calidad de planta en los proyectos de revegetación. In: Rey Benayas JM, Espigares T, Nicolau JM (eds) Restauración de ecosistemas mediterráneos. Colección Aula Abierta. Universidad de Alcalá, Madrid, pp 65–86Google Scholar
  57. Villar-Salvador P, Ocaña L, Peñuelas JL, Carrasco I (1999) Effects of water stress conditioning on the water relations, root growth capacity, and the nitrogen an non-structural carbohydrate concentration of Pinus halepensis Mill. (Aleppo pine) seedlinds. Ann Sci 56:459–465. doi:10.1051/forest:19990602 CrossRefGoogle Scholar
  58. Villar-Salvador P, Planelles R, Enriquez E, Peñuelas JL (2004) Nursery cultivation regimes, plant functional attributes, and field performance relationships in the Mediterranean oak Quercus ilex L. For Ecol Manage 196(2–3):257–266. doi:10.1016/j.foreco.2004.02.061 CrossRefGoogle Scholar
  59. Villar-Salvador P, Puértolas J, Peñuelas JL, Planelles R (2005) Effect of nitrogen fertilization in the nursery on the drought and frost resistance of Mediterranean forest species. Invest Agr Sist Recur For 14(3):408–418Google Scholar
  60. Villar-Salvador P, Valladares F, Domínguez-Lerena S, Ruiz-Díez B, Fernández-Pascual M, Delgado A, Peñuelas JL (2008) Functional traits related to seedling performance in the Mediterranean leguminous shrub Retama sphaerocarpa: insights from a provenance, fertilization, and rhizobial inoculation study. Environ Exp Bot 64:145–154. doi:10.1016/j.envexpbot.2008.04.005 CrossRefGoogle Scholar
  61. Zas R, Serrada R (2003) Foliar nutrient status and nutritional relationships of young Pinus radiata D. Don plantations in north-west Spain. For Ecol Manage 174(1–3):167–176. doi:10.1016/S0378-1127(02)00027-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Juan A. Oliet
    • 1
  • Rosa Planelles
    • 2
  • Francisco Artero
    • 3
  • Rosario Valverde
    • 4
  • Douglass F. Jacobs
    • 5
  • Maria L. Segura
    • 6
  1. 1.ETS, Ingenieros de MontesUniversidad Politécnica de MadridMadridSpain
  2. 2.EUIT ForestalUniversidad Politécnica de MadridMadridSpain
  3. 3.Departamento de Medio AmbienteInstituto Nacional de Investigación Agraria y AlimentariaMadridSpain
  4. 4.ETS, Ingenieros Agrónomos y de MontesUniversidad de CórdobaCórdobaSpain
  5. 5.Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration CenterPurdue UniversityWest LafayetteUSA
  6. 6.IFAPA, Centro La MojoneraConsejería de Innovación, Ciencia y Empresa. Junta de AndalucíaLa MojoneraSpain

Personalised recommendations