New Forests

, 35:159 | Cite as

The effect of Tuber melanosporum Vitt. mycorrhization on growth, nutrition, and water relations of Quercus petraea Liebl., Quercus faginea Lamk., and Pinus halepensis Mill. seedlings

  • José Alfonso Domínguez NúñezEmail author
  • Rosa Planelles González
  • José Antonio Rodríguez Barreal
  • José Antonio Saiz de Omeñaca González


Mycorrhizal and nonmycorrhizal Quercus faginea Lamk., Quercus petraea Liebl., and Pinus halepensis Mill. one-year-old seedlings inoculated with Tuber melanosporum Vitt. have been analyzed with the purpose of studying the influence of mycorrhization on their growth, water relations, and mineral nutrition. The mycorrhization improved Q. petraea and P. halepensis seedling growth. In addition, the mycorrhization created an elastic adjustment in P. halepensis, although it did not cause any osmotic adjustment. Additionally, the mycorrhization increased phosphorus uptake in Q. faginea and P. halepensis, content of all nutrients in P. halepensis, and N content in Q. petraea.


Black truffle Sessile oak Lusitanian oak Aleppo pine Osmotic adjustment Elastic adjustment 



This research was supported by the County of Valencia (FCEAM Mediterranean Environmental Research Center) and the County of Cantabria (Agriculture Council). The authors would also like to thank ETSI Montes, EUIT Forestal in Madrid, and INIA (National Institute of Agricultural Research) for their support and help.


  1. Abuzinadah RA, Read DJ (1989) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. IV. The utilization of peptides by birch (Betula pendula L.) infected with different mycorrhizal fungi. New Phytol 112:55–60CrossRefGoogle Scholar
  2. Agerer R (1987–1998) Colour Atlas of Ectomycorrhizae Ed. Einhorn-Verlay (Munich)Google Scholar
  3. Amaranthus MP, Perry D (1989) Rapid root tip and mycorrhiza formation and increased survival of Douglas-fir seedlings after soil transfer. New For 3:77–82Google Scholar
  4. Augé RM, Schekel KA, Wample RL (1986) Osmotic adjustment in leaves of VA mycorrhizal and non mycorrhizal rose plants in response to drought stress. Plant Physiol 82:765–770PubMedGoogle Scholar
  5. Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11(1):3–42CrossRefGoogle Scholar
  6. Bending GD, Read DJ (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants V Foraging behaviour and translocation of nutrients from exploited litter. New Phytol 130:401–409CrossRefGoogle Scholar
  7. Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207CrossRefGoogle Scholar
  8. Bjorkman E (1970) Mycorrhiza and tree nutrition in poor forest soils. Studia Forestalia Suecica 83:1–24Google Scholar
  9. Bowman WD, Roberts SW (1985) Seasonal changes in tissue elasticity in chaparral shrubs. Physiol Plant 65:233–236CrossRefGoogle Scholar
  10. Cheung YNS, Tyree MT, Dainty J (1975) Water relations parameters on single leaves obtained in a pressure bomb and some ecological interpretations. Can J Bot 53:1342–1346CrossRefGoogle Scholar
  11. Coleman MD, Bledsoe CS, Smit BA (1990) Root hydraulic conductivity and xylem sap levels of zeatin riboside and abscisic acid in ectomycorrhizal Douglas fir seedlings. New Phytol 115:275–284CrossRefGoogle Scholar
  12. Daniels Hetrick BA, Leslie JF, Thompson Wilson G, Gerschefske Kitt GD (1988) Physical and topological assessment of effects of a vesicular-arbuscular mycorrhizal fungus on root architecture of big bluestem. New Phytol 110:85–96CrossRefGoogle Scholar
  13. Davies FT, Potter JR, Linderman RG (1993) Drought resistance of mycorrhizal pepper plants independent of leaf P concentration response in gas exchange and water relations. Physiol Plant 87:45–53CrossRefGoogle Scholar
  14. Domínguez JA, RodrÍguez JA, Reyna S, Saíz de Omeñaca JA, Zazo J, Pérez R, Galiana F (2000) Mejora de la Nutrición Mineral en Planta Forestal Mediante Micorrización Controlada en Vivero VIII Simposio Nacional- IV Ibérico sobre Nutrición Mineral de las Plantas: Nutrición Mineral en una Agricultura Mediterránea Sostenible. Murcia, EspañaGoogle Scholar
  15. Domínguez JA (2002) Aportaciones de la micorrización artificial con Tuber melanosporum Vitt en planta forestal Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Montes. Universidad Politécnica de MadridGoogle Scholar
  16. Domínguez JA, Rodríguez Barreal JA, Saiz de Omeñaca JA (2006) The influence of mycorrhization with Tuber melanosporum in the afforestation of a Mediterranean site with Quercus ilex and Quercus faginea. For Ecol Manage 231:226–233CrossRefGoogle Scholar
  17. Duan X, Neuman DS, Reiber JM, Green CD, Saxton AM, Augé RM (1996) Mycorrhizal influence on hydraulic and hormonal factors involved in the control of stomatal conductance during drought. J Exp Bot 47:1541–1550CrossRefGoogle Scholar
  18. Emadian SF, Newton RJ (1989) Growth enhancement of lobolly pine (Pinus taeda L.) seedlings with silicon. J Plant Physiol 134:98–103Google Scholar
  19. Fitter AH (1988) Water relations of red clover Trifolium pratense L. as affected by VA mycorrhizal infection and phosphorus supply before and during drought. J Exp Bot 3:595–603CrossRefGoogle Scholar
  20. Goicoechea N, Antolin MC, Sánchez-Díaz M (1997) Influence of arbuscular mycorrhizae and Rhizobium on nutrient content and water relations in drought stressed alfalfa. Plant Soil 192:261–268CrossRefGoogle Scholar
  21. Goicoechea N, Dolezal K, Antolin MC, Strnad M, Sánchez-Díaz M (1995) Influence of mycorrhizae and Rhizobium on cytokinin content in drought-stressed alfalfa. J Exp Bot 46:1543–1549CrossRefGoogle Scholar
  22. Griffiths RP, Caldwell BA (1992) Mycorrhizal mat communities in forest soils. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. C. A. B. International, Wallingford, pp 98–105Google Scholar
  23. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  24. Harvey AE, Larsen MJ, Jurgensen MF (1976) Distribution of ectomycorrhizae in a mature douglas-fir/larch soil in western Montana. For Sci 22:393–633Google Scholar
  25. Hausling M, Marschner H (1989) Organic and inorganic soil phosphates and soil phosphatase activity in the rhizosphere of 80-year-old norway spruce [Picea abies (L) Karst] trees. Biol Fertil Soils 8:128–133CrossRefGoogle Scholar
  26. Hayman DS (1983) The physiology of vesicular-arbuscular endomycorrhizal symbiosis. Can J Bot 61:944–963Google Scholar
  27. Jones M, Turner NC, Osmond CB (1981) Mechanisms of drought resistance. In: Paleg L, Aspinall D (eds) Physiology and biochemistry of drought resistance in plants. Academic Press, New York, NY, pp 15–37Google Scholar
  28. Jones MM, Turner NC (1980) Osmotic adjustment in expanding and fully expanded leves of sunlower in response to water deficits. Aust J Plant Physiol 7:181–192Google Scholar
  29. Jongmans AG, van Breenan N, Lundström U, van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud P-A, Olsson M (1997) Rock-eating fungi. Nature 389:682–683CrossRefGoogle Scholar
  30. Kahiluoto H, Vestberg M (1998) The effect of arbuscular mycorrhiza on biomass production and phosphorus uptake from sparingly soluble sources by leek (Allium porrum L.) in Finnish field soils. Biol Agric Horticult 16:65–85Google Scholar
  31. Kothari SK, Marschner H, George E (1990) Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytol 116:303–311CrossRefGoogle Scholar
  32. Lamhamedi MS, Bernier PY, Fortin JA (1992) Hydraulic conductance and soil water potential at the soil-root interface of Pinus pinaster seedlings inoculated with different dikaryons of Pisolithus sp. Tree Physiol 10:231–244PubMedGoogle Scholar
  33. Landhäusser S, Muhsin T, Zwiazek J (2002) The effect of ectomycorrhizae on water relations in aspen (Populus tremuloides) and white spruce (Picea glauca) at low soil temperatures. Can J Bot 80:684–689CrossRefGoogle Scholar
  34. Meier CE, Newton RJ, Puryear JD, Sen S (1992) Physiological responses of lobolly pine (Pinus taeda L.) seedlings to drought stress: osmotic adjustment and tissue elasticity. J Plant Physiol 140:754–760Google Scholar
  35. Meyer RF, Boyer JS (1972) Sensitivity of cell division and cell elongation to low water potential in soybean hypocotyls. Planta 108:77–87CrossRefGoogle Scholar
  36. Miller RM, Hetrick BAD, Wilson GWT (1997) Mycorrhizal fungi affect root stele tissue in grasses. Can J Bot 75:1778–1784Google Scholar
  37. Mosse B (1959) Observations on the extra-matrical mycelium of a vesicular-arbuscular endophyte. Trans Br Mycol Soc 42:439–448Google Scholar
  38. Nardini A, Salleo S, Tyree M, Vertovec M (2000) Influence of the ectomycorrhizas formed by Tuber melanosporum Vitt on hydraulic conductance and water relations of Quercus ilex L seedlings. Ann For Sci 57:305–312CrossRefGoogle Scholar
  39. Newton RJ, Sen S, Puryear JD (1989) Solute contributions to osmotic potential in loblolly pine (Pinus taeda L.) callus. J Plant Physiol 134:746–750Google Scholar
  40. Nicholson TH (1959) Mycorrhiza in the Gramineae. I. Vesicular-arbuscular endophytes, with special reference to the external phase. Trans Br Mycol Soc 42:421–438Google Scholar
  41. Nylund JE (1988) The regulation of mycorrhiza formation-carbohydrate and hormone theories reviewed. Scand J For Res 3:465–479Google Scholar
  42. Querejeta JI, Roldan A, Albaladejo J, Castillo V (1998) The role of mycorrhizae, site preparation, and organic amendment in the afforestation of a semi-arid Mediterranean site with Pinus halepensis. For Sci 44:203–211Google Scholar
  43. Reddell P, Malajczuk N (1984) Formation of mycorrhizae by jarrah (Eucalyptus marginata Donn. ex Smith) in litter and soil. Aust J Bot 32:511–520CrossRefGoogle Scholar
  44. Reid CPP, Kidd FA, Ekwebelam SA (1983) Nitrogen nutrition, photosynthesis and carbon allocation in ectomycorrhizal pine. Plant soil 71:415–432CrossRefGoogle Scholar
  45. Robichaux RH (1984) Variation in the tissue water relations of two sympatric Hawaiian Dubautia species and their natural hybrid. Oecologia (Berlin) 65:75–81CrossRefGoogle Scholar
  46. Rodríguez JA, Reyna S, Domínguez JA, Saíz de Omeñaca JA, Zazo J, Pérez R, Galiana F (1999) Producción de Plantas Micorrizadas de Calidad; Implantación, Mantenimiento y Mejora de Rodales Productores de Trufa y Otras Setas Reunión final de Coordinación del Programa de Investigación y desarrollo en relación con la restauración de la Cubierta Vegetal. CEAM (Fundación Centro de Estudios Ambientales del Mediterráneo), CastellónGoogle Scholar
  47. Rousseau JVD, Reid CPP (1989) Measurement of carbon cost in ectomycorrhiza. In: Torrey JG, Winship LJ (eds) Applications of continuous and steady-state methods to root biologyGoogle Scholar
  48. Ruiz-Lozano JM, Azcón R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472–478CrossRefGoogle Scholar
  49. Safir GR, Boyer JS, Gerdemann JW (1971) Mycorrhizal enhancement of water transport in soybean. Science 172:581–583PubMedCrossRefGoogle Scholar
  50. Sagara N (1992) Experimental disturbances and epigeous fungi. In: Carol CC, Wicklow DT (eds) The fungal community, 2nd edn. Marcel Decker, New York, pp 427–454Google Scholar
  51. Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346PubMedCrossRefGoogle Scholar
  52. Schweiger PFG (1994) Factors effecting VA mycorrhizal uptake of phosphorus. PhD Thesis, University of Western Australia, PerthGoogle Scholar
  53. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London, p 605Google Scholar
  54. Stark N (1972) Nutrient cycling pathways and litter fungi. Bioscience 22:355–360CrossRefGoogle Scholar
  55. St John TV, Coleman DC, Reid CPP (1983) Growth and spatial distribution of nutrient-absorbing organs: selective exploitation of soil heterogeneity. Plant Soil 71:487–493CrossRefGoogle Scholar
  56. Strullu DG, Harley JL, Gourret JP, Garrec JP (1983) A note on the relative phosphorus and calcium contents of metachromatic granules in Fagus mycorrhiza 94:89–94Google Scholar
  57. Tarafdar JC, Marschner H (1994) Efficiency of VAM hyphae in utilisation of organic phosphorus by wheat plants. Soil Sci Plant Nutr 40:593–600Google Scholar
  58. Tyree M, Jarvis PG (1982) Water in tissues and cells. In: Lange OL, Nobel PS, Osmond CB , Ziegler H (eds) Encyclopedia of plant physiology, new series, vol 12B, physiological plant ecology II. Springer-Verlag, Berlin, pp 36–77Google Scholar
  59. Tyree M, Hammel HT (1972) The measurement of the turgor pressure and the water relations of plants by the pressure technique. J Exp Bot 23:267–282CrossRefGoogle Scholar
  60. Warner A (1984) Colonization of organic matter by vesicular-arbuscular mycorrhizal fungi. Trans Br Mycol Soc 82:352–354CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • José Alfonso Domínguez Núñez
    • 1
    Email author
  • Rosa Planelles González
    • 2
  • José Antonio Rodríguez Barreal
    • 1
  • José Antonio Saiz de Omeñaca González
    • 1
  1. 1.U.D. Patología Forestal. Dpto. Silvopascicultura. E.T.S. Ingenieros de MontesUniversidad Politécnica de MadridMadridSpain
  2. 2.U.D. Selvicultura. E.U.I.T. ForestalUniversidad Politécnica de MadridMadridSpain

Personalised recommendations