New Forests

, Volume 29, Issue 3, pp 221–231 | Cite as

A transition matrix growth model for uneven-aged mixed-species forests in the Changbai Mountains, northeastern China

  • Qingyu Hao
  • Fanrui Meng
  • Yuping Zhou
  • Jingxin Wang


A transition matrix growth and an ingrowth model were developed and applied to an uneven-aged mixed-species forest in the Changbai Mountains, northeastern of China. Results indicate that the constant-parameter transition probabilities for all species in the mixed uneven-aged forest could be classified into three groups based on the mean upgrowth probabilities of each species. Constant-parameter transition probabilities of all species in each diameter class fluctuate within a narrow range except for diameter classes below 8 cm and greater than 60 cm. Variable-parameter transition probabilities were found to be a function of residual basal area for small diameter classes. For large trees, transition probabilities are not affected by the residual basal area. Based on this study, variable-parameter transition probabilities for large diameter trees can be replaced with constant-parameter transition probabilities. In addition, a new ingrowth model was developed and the new ingrowth model was shown to perform better than existing ingrowth model used in the region.


Growth and yield Ingrowth model Matrix model Mixed species Transition probability model Uneven-aged 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, D.M., Ek, A.R. 1974Optimizing the management of uneven-aged forest standsCan. J. For. Res.4274287Google Scholar
  2. 2.
    Bruner, H.D., Moser, J.W.,Jr. 1973A Markov chain approach to the prediction of diameter distributions in uneven-aged forest standsCan. J. For. Res.3409417Google Scholar
  3. 3.
    Bullard, S.H., , Sherali, H.D., Klemperer, W.D. 1985Estimating optimal thinning and rotation for mixed-species timber stands using a random search algorithmFor. Sci.31303315Google Scholar
  4. 4.
    Buongiorno, J., Michie, B.R. 1980A matrix model of uneven-aged forest managementFor. Sci.26609625Google Scholar
  5. 5.
    Buongiorno, J., Peyron, J., Houllier, F., Bruciamacchie, M. 1995Growth and management of mixed-species, uneven-aged forests in the French Jura: implications for economic returns and tree diversityFor. Sci.41397429Google Scholar
  6. 6.
    Cassell R.F. and Moser Jr. J.W. 1974. A programmed Markov model for predicting diameter distributions in uneven-aged forests. Purdue Univ. Agric. Exp. Stat. Res. Bull. 915, pp. 43. Google Scholar
  7. 7.
    Chinese Surveying and Planning Institute. 1981. Mountain Forest of China. Forestry publish house of China.Google Scholar
  8. 8.
    Doubleday, W.G. 1975Harvesting in matrix population modelsBiometrics31189200Google Scholar
  9. 9.
    Ek, A.R. 1974Nonlinear models for stand table projection in northern hardwood standsCan. J. For. Res.42327Google Scholar
  10. 10.
    Frazier, J.R. 1978An investigation of the Markov model to predict individual tree DBH. M.S. ThesisAuburn UniversityAuburnpp. 253.Google Scholar
  11. 11.
    Gove, J.H., Fairweather, S.E. 1992Optimizing the management of uneven-aged forest stands: a stochastic approachFor. Sci.38623640Google Scholar
  12. 12.
    Hann D.W. and Bare B.B. 1979. Uneven-aged forest management: state of the art. USDA For. Serv. Gen. Tech. Rep. INT-50, pp. 18.Google Scholar
  13. 13.
    Institute of forestry soil of China. 1978. Korean Pine Forest. Academy of forestry Science, Agricultural publish house of China.Google Scholar
  14. 14.
    Kimmins, J.P. 1990Modeling the sustainability of forest production and yield for a changing and uncertain futureFor. Chron.66271280Google Scholar
  15. 15.
    Kimmins, J.P. 1997Forest Ecology: A Foundation for Sustainable Management. 2nd ednPrentice HallNew Jerseypp. 596.Google Scholar
  16. 16.
    Leslie, P.H. 1945On the use of matrices in certain population mathematicsBiometrika33183212Google Scholar
  17. 17.
    Lewis, E.G. 1942Oh the generation and growth of a populationSankhya69396Google Scholar
  18. 18.
    Lin, C.R., Buongiorno, J. 1997Fixed versus variable-parameter matrix models of forest growth: the case of maple-birch forestsEcol. Model.99263274CrossRefGoogle Scholar
  19. 19.
    Lin, C.-R., Buongiorno, J., Vasievich, M. 1996A multi-species, density-dependent matrix growth model to predict tree diversity and income in northern hardwood standsEcol. Model.91193211CrossRefGoogle Scholar
  20. 20.
    Lu, H., Buongiorno, J. 1993Long- and short-term effects of alternative cutting regimes on economic returns and ecological diversity in mixed-species forestsFor. Ecol Manage.58173192Google Scholar
  21. 21.
    Mendoza, G.A., Setyarso, A. 1986A transition matrix forest growth model for evaluating alternative harvesting schemes in IndonesiaFor. Ecol. Manage.15219228Google Scholar
  22. 22.
    Mengel, D.L., Roise, J.R. 1990A diameter-class model for southeastern U.S. coastal plain hardwood standsSouth. J. Appl. For.14189195Google Scholar
  23. 23.
    Moser, J.W.,Jr. 1972Variable-parameters of an uneven-aged forest standsFor. Sci.18184191Google Scholar
  24. 24.
    Moser Jr. J.W. 1974. A system of equation for the components of forest growth. In: Fies J. (eds), Growth Models for Tree and Stand Simulation. Res. Notes 30, Royal. Coll. For., Stockholm, pp. 260–287.Google Scholar
  25. 25.
    Moser, J.W.,Jr., Hall, O.F. 1969Deriving growth and yield functions for uneven-aged forest standsFor. Sci.15183188Google Scholar
  26. 26.
    Murphy P.A. and Farrar R.M. 1985. Growth and yield of uneven-aged shortleaf pine stands in Interior Highlands. USDA For. Serv. Res. Pap. SO-218, pp. 11.Google Scholar
  27. 28.
    Roberts, M.R., Hruska, A.J. 1986Predicting diameter distributions: a test of the stationary Markov modelCan. J. For. Res.16130135Google Scholar
  28. 29.
    Rorres, C. 1978A linear programming approach to the optimum sustainable harvesting of a forestJ. Environ. Manage.6245254Google Scholar
  29. 27.
    Sanchez Orois, S., Soalleiro Rodriguez, R. 2002Modelling the growth and management of mixed uneven-aged Maritime Pine- broadleaved species forest in Galicianorth-western SpainScand. J. For. Res.17538547CrossRefGoogle Scholar
  30. 30.
    Schulte, B.J., Buongiorno, J. 1998Effects of uneven-aged silviculture on the stand structurespecies composition, and economic returns of loblolly pine standsFor. Ecol. Mange.11183101Google Scholar
  31. 31.
    Solomon, D.S., Hosmer, R.A., Hayslett, H.T. 1986A two-stage matrix model for predicting growth of forest stands in northeastCan. J. For. Res.16521528Google Scholar
  32. 32.
    Usher, M.B. 1966A matrix approach to the management of renewable resources, with special reference to selection forestsJ. Appl. Ecol.3355367Google Scholar
  33. 33.
    Usher, M.B. 1976Extensions to models, used in renewable resource managementwhich incorporate an arbitrary structureJ. Environ. Manage.4123140Google Scholar
  34. 34.
    Volin, V.C., Buongiorno, J. 1996Effects of alternative management regimes on forest stand structurespecies composition, and income: a model for the Italian DolomitesFor. Ecol. Manage.87107125Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Qingyu Hao
    • 1
  • Fanrui Meng
    • 2
  • Yuping Zhou
    • 1
  • Jingxin Wang
    • 3
  1. 1.College of ForestryBeihua UniversityJilinChina
  2. 2.Faculty of Forestry and Environmental ManagementUniversity of New BrunswickFrederictonCanada
  3. 3.Division of ForestryWest Virginia UniversityMorgantownUSA

Personalised recommendations