Neuroscience and Behavioral Physiology

, Volume 49, Issue 9, pp 1096–1099 | Cite as

The Neuroprotective Effect of Forskolin and Its Influence of Mitochondrial Dysfunction in Neurons in Primary Rat Cerebellum Cultures

  • M. A. Ivanova
  • L. S. Sitnikova
  • T. V. Karelina
  • D. A. Sibarov
  • P. A. AbushikEmail author
  • S. M. Antonov

Activation of cyclic adenosine monophosphate (cAMP) synthesis is known to lead to triggering of neuroprotective signal cascades. It is therefore interesting to assess the effects of forskolin as an activator of adenylate cyclase and cAMP production on the neurotoxic action of glutamate in rat cerebellar neurons and to identify the participants in this signal cascade. This approach was used in experiments with a protein kinase A (PKA) inhibitor, the protein kinase C (PKC) blocker chelerythrine, and the calmodulin-dependent kinase II (CaMKII) blocker KN93, which showed that the neuroprotective effect of forskolin (1 μM) on long-term (24 h) exposure to glutamate (100 μM) involves PKA and CaMKII. Additional analysis of the dynamics of the development of mitochondrial dysfunction on exposure to glutamate showed that forskolin can prevent the drop in mitochondrial membrane potential in rat cerebellar neurons typical of excitotoxic stress.


neurodegeneration glutamate forskolin neuroprotection apoptosis mitochondrial potential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Ivanova, L. S. Sitnikova, Yu. D. Stepanenko, et al., “Forskolin as a neuroprotector and modulator of glutamate-dependent Ca2+ influx into cerebellar neurons,” Biol. Membr. (2018), in press.Google Scholar
  2. 2.
    L. S. Sitnikova, M. A. Ivanova, and Yu. D. Stepanenko, et al., “Collapse of the energy balance of cerebellar neurons as the basis of the neurotoxic action of L-homocysteine,” Biol. Membr. (2018), in press.Google Scholar
  3. 3.
    P. A. Abushik, G. Bart, P. Korhonen, et al., “Pronociceptive migraine mediator CGRP provides neuroprotection of sensory, cortical and cerebellar neurons via multikinase signaling,” Cephalalgia, 37, No. 14, 1373–1383 (2017).CrossRefGoogle Scholar
  4. 4.
    P. A. Abushik, M. Niittykoski, R. Giniatullina, et al., “The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells,” J. Neurochem., 129, No. 2, 264–274 (2014).CrossRefGoogle Scholar
  5. 5.
    R. DiPolo and L. Beauge, “An ATP-dependent Na+/Mg2+ counter-transport is the only mechanism for Mg extrusion in squid axons,” Biochem. Biophys. Acta, 946, No. 2, 424–428 (1988).CrossRefGoogle Scholar
  6. 6.
    M. R. Duchen, “Mitochondria, calcium-dependent neuronal death and neurodegenerative disease,” Pflügers Arch., 64, No. 1, 111–121 (2012).CrossRefGoogle Scholar
  7. 7.
    L. El-Hassar, A. M. Hagenston, L. B. D’Angelo, and M. F. Yeckel, “Metabotropic glutamate receptors regulate hippocampal CA1 pyramidal neuron excitability via Ca2+ wave-dependent activation of SK and TRPC channels,” J. Physiol. (London), 589, 3211–3229 (2011).CrossRefGoogle Scholar
  8. 8.
    J. Garcia-Bermúdez, M. Sánchez-Aragó, B. Soldevilla, et al., “PKA phosphorylates the ATPase inhibitory factor 1 and inactivates its capacity to bind and inhibit the mitochondrial H(+)-ATP synthase,” Cell Rep., 12, 2143–2155 (2015).CrossRefGoogle Scholar
  9. 9.
    P. E. Hockberger, H. Y. Tseng, and J. A. Connor, “Development of rat cerebellar Purkinje cells: electrophysiological properties following acute isolation and in long-term culture,” J. Neurosci., 9, No. 7, 2258–2271 (1989).CrossRefGoogle Scholar
  10. 10.
    H. Huang, H. Wang, and M. E. Figueiredo-Pereira, “Regulating the ubiquitin/proteasome pathway via cAMP-signaling: neuroprotective potential,” Cell Biochem. Biophys., 67, No. 1, 55–66 (2013).CrossRefGoogle Scholar
  11. 11.
    M. Jozwiak-Bebenista, E. Kowalczyk, and J. Z. Nowak, “The cyclic AMP effects and neuroprotective activities of PACAP and VIP in cultured astrocytes and neurons exposed to oxygen-glucose deprivation,” Pharmacol. Rep., 67, No. 2, 332–338 (2015).CrossRefGoogle Scholar
  12. 12.
    B. Khodorov, “Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurons,” Prog. Biophys. Molec. Biol., 86, No. 2, 279–351 (2004).CrossRefGoogle Scholar
  13. 13.
    E. V. Mironova, A. A. Evstratova, and S. M. Antonov, “A fluorescence vital assay for the recognition and quantification of excitotoxic cell death by necrosis and apoptosis using confocal microscopy on neurons in culture,” J. Neurosci. Meth., 163, No. 1, 1–8 (2007).CrossRefGoogle Scholar
  14. 14.
    D. A. Sibarov, A. E. Bolshakov, P. A. Abushik, et al., “Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+-exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress,” J. Pharmacol. Exp. Ther., 343, No. 3, 596–607 (2012).Google Scholar
  15. 15.
    R. J. White and I. J. Reynolds, “Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons,” J. Neurosci., 15, No. 2, 1318–1328 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. A. Ivanova
    • 1
  • L. S. Sitnikova
    • 1
  • T. V. Karelina
    • 1
  • D. A. Sibarov
    • 1
  • P. A. Abushik
    • 1
    Email author
  • S. M. Antonov
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations