Neuroscience and Behavioral Physiology

, Volume 49, Issue 9, pp 1083–1088 | Cite as

Use of Optogenetic Methods to Study and Suppress Epileptic Activity (review)

  • E. Yu. SmirnovaEmail author
  • A. V. Zaitsev

About one per cent of the world’s population suffers from epilepsy, and approximately 30% of cases fail to respond to medication. Novel approaches to treatment are required to help patients with drug-resistant epilepsy. One potential method consists of low-frequency stimulation of brain structures. However, at this time the mechanism of the anticonvulsant action of low-frequency stimulation is not completely understood. There are significant drawbacks to this method: it is invasive in nature and has nonspecific actions on brain tissues, which leads to various side effects. The development of optogenetics has provided a new impulse to studies of the mechanisms of action of low-frequency stimulation on epileptic activity. In addition, there is hope for significant reductions in the side effects of stimulation, as there is potential for selective activation or, conversely, inhibition of particular neuron populations. This review describes current progress in studies of the mechanisms of the generation and suppression of epileptic activity using an optogenetic method in in vitro and in vivo models of epilepsy. The potentials of this approach for clinical use are discussed.


epilepsy, low-frequency brain stimulation optogenetic brain stimulation suppression of epileptic activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. G. Govorunova, O. A. Sineshchekov, and J. L. Spudich, “Three families of channelrhodopsins and their use in optogenetics,” Zh. Vyssh. Nerv. Deyat., 67, No. 5, 9–17 (2017).Google Scholar
  2. 2.
    E. P. Kuleshova, “Optogenetics – new potentials for electrophysiology,” Zh. Vyssh. Nerv. Deyat., 67, No. 5, 18–31 (2017).Google Scholar
  3. 3.
    R. D. Airan, K. R. Thompson, L. E. Fenno, et al., “Temporally precise in vivo control of intracellular signalling,” Nature, 458, No. 7241, 1025–1029 (2009).CrossRefGoogle Scholar
  4. 4.
    H. Alfonsa, J. H. Lakey, R. N. Lightowlers, and A. J. Trevelyan, “Clout is a novel cooperative optogenetic tool for extruding chloride from neurons,” Nat. Commun., 7, 13495 (2016).CrossRefGoogle Scholar
  5. 5.
    M. Barbarosie and M. Avoli, “CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures,” J. Neurosci., 17, No. 23, 9308–9314 (1997).CrossRefGoogle Scholar
  6. 6.
    S. B. Bonelli, P. J. Thompson, M. Yogarajah, et al., “Memory reorganization following anterior temporal lobe resection: a longitudinal functional MRI study,” Brain, 136, No. 6, 1889–1900 (2013).CrossRefGoogle Scholar
  7. 7.
    E. S. Boyden, F. Zhang, E. Bamberg, et al., “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci., 8, No. 9, 1263–1268 (2005).CrossRefGoogle Scholar
  8. 8.
    S. Chen, A. Z. Weitemier, X. Zeng, et al., “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science, 359, No. 6376, 679–684 (2018).CrossRefGoogle Scholar
  9. 9.
    B. Y. Chow, X. Han, A. S. Dobry, et al., “High-performance genetically targetable optical neural silencing by light-driven proton pumps,” Nature, 463, No. 7277, 98–102 (2010).CrossRefGoogle Scholar
  10. 10.
    S. G. Coleshill, C. D. Binnie, R. G. Morris, et al., “Material-specific recognition memory deficits elicited by unilateral hippocampal electrical stimulation,” J. Neurosci., 24, No. 7, 1612–1616 (2004).CrossRefGoogle Scholar
  11. 11.
    T. J. Ellender, J. V. Raimondo, A. Irkle, et al., “Excitatory effects of parvalbumin-expressing interneurons maintain hippocampal epileptiform activity via synchronous afterdischarges,” J. Neurosci., 34, No. 46, 15208–15222 (2014).CrossRefGoogle Scholar
  12. 12.
    R. Esteller, J. Echauz, T. Tcheng, et al., “Line length: an efficient feature for seizure onset detection,” in: Proc. 23rd Ann. Int. IEEE Conf. Engineering in Medicine and Biology Society (2001), pp. 1707–1710.Google Scholar
  13. 13.
    G. Fink and M. G. Jamieson, “Effect of electrical stimulation of the preoptic area on luteinizing hormone releasing factor in pituitary stalk blood,” J. Physiol., 237, No. 2, 37P–38P (1974).PubMedGoogle Scholar
  14. 14.
    R. S. Fisher and A. L. Velasco, “Electrical brain stimulation for epilepsy,” Nat. Dev. Neurol., 10, No. 5, 261–270 (2014).CrossRefGoogle Scholar
  15. 15.
    M. Gschwind and M. Seeck, “Transcranial direct-current stimulation as treatment in epilepsy,” Exp. Rev. Neurother., 16, No. 12, 1427–1441 (2016).CrossRefGoogle Scholar
  16. 16.
    T. P. Ladas, C. C. Chiang, L. E. Gonzalez-Reyes,et al., “Seizure reduction through interneuron-mediated entrainment using low frequency optical stimulation,” Exp. Neurol., 269, 120–132 (2015).CrossRefGoogle Scholar
  17. 17.
    L. Lanteaume, S. Khalfa, J. Regis, et al., “Emotion induction after direct intracerebral stimulations of human amygdala,” Cereb. Cortex, 17, No. 6, 1307–1313 (2007).CrossRefGoogle Scholar
  18. 18.
    M. Ledri, M. G. Madsen, L. Nikitidou, et al., “Global optogenetic activation of inhibitory interneurons during epileptiform activity,” J. Neurosci., 34, No. 9, 3364–3377 (2014).CrossRefGoogle Scholar
  19. 19.
    X. Liu, S. Ramirez, P. T. Pang, C. B. Puryear, et al., “Optogenetic stimulation of a hippocampal engram activates fear memory recall,” Nature, 484, No. 7394, 381–385 (2012).CrossRefGoogle Scholar
  20. 20.
    M. Mahn, M. Prigge, S. Ron, et al., “Biophysical constraints of optogenetic inhibition at presynaptic terminals,” Nat. Neurosci., 19, No. 4, 554–556 (2016).CrossRefGoogle Scholar
  21. 21.
    A. Y. Malyshev, M. V. Roshchin, G. R. Smirnova, et al., “Chloride conducting light activated channel GtACR2 can produce both cessation of fi ring and generation of action potentials in cortical neurons in response to light,” Neurosci. Lett., 640, 76–80 (2017).CrossRefGoogle Scholar
  22. 22.
    D. A. McCormick and D. Contreras, “On the cellular and network bases of epileptic seizures,” Annu. Rev. Physiol., 63, 815–846 (2001).CrossRefGoogle Scholar
  23. 23.
    J. T. Paz, T. J. Davidson, E. S. Frechette, et al., “Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury,” Nat. Neurosci., 16, No. 1, 64–70 (2013).CrossRefGoogle Scholar
  24. 24.
    J. V. Raimondo, L. Kay, T. J. Ellender, and C. J. Akerman, “Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission,” Nat. Neurosci., 15, No. 8, 1102–1104 (2012).CrossRefGoogle Scholar
  25. 25.
    L. Shen, C. Chen, H. Zheng, and L. Jin, “The evolutionary relationship between microbial rhodopsins and metazoan rhodopsins,” Scient. World J. (2013).Google Scholar
  26. 26.
    Z. Shiri, M. Lévesque, G. Etter, et al., “Optogenetic Low-frequency stimulation of specific neuronal populations abates ictogenesis,” J. Neurosci., 37, No. 11, 2999–3008 (2017).CrossRefGoogle Scholar
  27. 27.
    W. R. Stauffer, A. Lak, A. Yang, et al., “Dopamine neuron-specific optogenetic stimulation in rhesus macaques,” Cell, 166, No. 6, 1564–1571 (2016).CrossRefGoogle Scholar
  28. 28.
    J. Tønnesen, A. T. Sørensen, K. Deisseroth, et al., “Optogenetic control of epileptiform activity,” Proc. Natl. Acad. Sci. USA, 106, No. 29, 12162–12167 (2009).CrossRefGoogle Scholar
  29. 29.
    J. Tønnesen and M. Kokaia, “Epilepsy and optogenetics: can seizures be controlled by light?” Clin. Sci. (Lond.), 131, No. 14, 1605–1616 (2017).CrossRefGoogle Scholar
  30. 30.
    B. M. Uthman, “Vagus nerve stimulation for seizures,” Arch. Med. Res., 31, No. 3, 300–303 (2000).CrossRefGoogle Scholar
  31. 31.
    F. Wendling, U. Gerber, D. Cosandier-Rimele, et al., “Brain (hyper) excitability revealed by optimal electrical stimulation of GABAergic interneurons,” Brain Stimul., 9, No. 6, 919–932 (2016).CrossRefGoogle Scholar
  32. 32.
    J. Wietek, J. S. Wiegert, N. Adeishvili, et al., “Conversion of channelrhodopsin into a light-gated chloride channel,” Science, 344, No. 6182, 409–412 (2014).CrossRefGoogle Scholar
  33. 33.
    Z. Xu, Y. Wang, B. Chen, et al., “Entorhinal principal neurons mediate brain-stimulation treatments for epilepsy,” EBioMedicine, 14, 148–160 (2016).CrossRefGoogle Scholar
  34. 34.
    L. Yekhlef, G. L. Breschi, L. Lagostena, et al., “Selective activation of parvalbumin- or somatostatin-expressing interneurons triggers epileptic seizure-like activity in mouse medial entorhinal cortex,” J. Neurophysiol., 113, No. 5, 1616–1630 (2014).CrossRefGoogle Scholar
  35. 35.
    L. Yekhlef, G. L. Breschi, and S. Taverna, “Optogenetic activation of VGLUT2-expressing excitatory neurons blocks epileptic seizure-like activity in the mouse entorhinal cortex,” Sci. Rep., 7, 43230 (2017).CrossRefGoogle Scholar
  36. 36.
    H. Zeng and L. Madisen, “Mouse transgenic approaches in optogenetics,” Prog. Brain Res., 196, 193–213 (2012).CrossRefGoogle Scholar
  37. 37.
    F. Zhang, L. P. Wang, M. Brauner, et al., “Multimodal fast optical interrogation of neural circuitry,” Nature, 446, No. 7136, 633–639 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations