Advertisement

Features of the Operation of the Mirror Neuron System in Patients with Affective Disorders

  • N. N. Lebedeva
  • E. D. KarimovaEmail author
  • S. E. Burkitbaev
  • V. Yu. Maltsev
  • A. B. Guekht
Article
  • 1 Downloads

Objectives. To identify the characteristics of changes in the electroencephalogram (EEG) pattern and activation of neural networks on perception and performance of a motor act in healthy people and patients with affective disorders. Materials and methods. The study group consisted of 15 patients with affective disorders and the control group comprised 11 healthy subjects. The task was to first observe a hand movement performed by the experimenter (clenching of the fist), then to imagine this movement, and then to perform it themselves. EEG recordings were made and analyzed; areas of activation were identified by solving the reverse EEG problem using LORETA. Results and conclusions. Activation of the mirror system of the brain in patients with affective disorders was seen in the left temporal hemisphere, while healthy subjects showed activation in the temporal lobes of both hemispheres and the frontal superior, middle, and inferior gyri.

Keywords

affective disorders μ rhythm mirror neurons electroencephalography LORETA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Kessler, “The effects of stressful life events on depression,” Ann. Rev. Psychol., 48, No. 1, 191–214 (1997),  https://doi.org/10.1146/annurev.psych.48.1.191.CrossRefGoogle Scholar
  2. 2.
    R. Hirschfield, “The comorbidity of major depression and anxiety disorders,” Prim. Care Companion J. Clin. Psychiatry, 3, No. 06, 244–254 (2001),  https://doi.org/10.4088/pcc.v03n0609.CrossRefGoogle Scholar
  3. 3.
    C. H. Van Valkenburg, H. S. Akiskal, and V. Puzantian, “Anxious depressions,” J. Affect. Disord., 6, 67 (1982).CrossRefGoogle Scholar
  4. 4.
    H. Wittchen, C. Ahmoi Essau, H. Hecht, et al., “Reliability of life event assessments: test-retest reliability and fall-off effects of the Munich interview for the assessment of life events and conditions,” J. Affect. Disord., 16, No. 1, 77–91 (1989),  https://doi.org/10.1016/0165-0327(89)90059-1.CrossRefGoogle Scholar
  5. 5.
    F. Lederbogen, P. Kirsch, L. Haddad, et al., “City living and urban upbringing affect neural social stress processing in humans,” Nature, 474, No. 7352, 498–501 (2011),  https://doi.org/10.1038/nature10190.CrossRefGoogle Scholar
  6. 6.
    W. Pan, G. Thompson, M. Magnuson, et al., “Simultaneous fMRI and electrophysiology in the rodent brain,” J. Vis. Exp., 42, 1901 (2010),  https://doi.org/10.3791/1901.Google Scholar
  7. 7.
    J. Os, L. Krabbendam, I. Myin-Germeys, and P. Delespaul, “The schizophrenia envirome,” Curr. Opin. Psychiatry, 18, No. 2, 141–145 (2005),  https://doi.org/10.1097/00001504-200503000-00006.CrossRefGoogle Scholar
  8. 8.
    K. Schmitz, R. Ahmed, A. Troxel, et al., “Weight lifting in women with breast cancer-related lymphedema,” N. Engl. J. Med., 361, No. 7, 664–673 (2009),  https://doi.org/10.1056/nejmoa0810118.CrossRefGoogle Scholar
  9. 9.
    G. Rizzolatti, L. Fadiga, L. Fogassi, and V. Gallese, “Premotor cortex and the recognition of motor actions,” Cogn. Brain Res., 3, No. 2, 131–141 (1996),  https://doi.org/10.1016/0926-6410(95)00038-0.CrossRefGoogle Scholar
  10. 10.
    H. Gastaut and J. Bert, “EEG changes during cinematographic presentation (Moving picture activation of the EEG),” Electroencephalogr. Clin. Neurophysiol., 6, 433–444 (1954),  https://doi.org/10.1016/0013-4694(54)90058-9.CrossRefGoogle Scholar
  11. 11.
    G. Cohen-Seat, H. Gastaut, J. Faure, and G. Heuyer, “Études experiementales de l’activité nerveuse pendant la projection cinematographique,” Rev. Int. de Filmologie, 5, 7–64 (1954).Google Scholar
  12. 12.
    E. L. Altschuler, A. Vankov, V. Wang, et al., Person See, Person Do: Human Cortical Electrophysiological Correlates of Monkey See Monkey Do Cells, Poster Session Presented at the 27th Annual Meeting of the Society for Neuroscience, New Orleans, LA (1997).Google Scholar
  13. 13.
    N. A. Fox, M. J. Bakermans-Kranenburg, K. H. Yoo, et al., “Assessing human mirror activity with EEG mu rhythm: A meta-analysis,” Psychol. Bull., 142, No. 3, 291–313 (2016),  https://doi.org/10.1037/bul0000031.supp.CrossRefGoogle Scholar
  14. 14.
    G. Rizzolatti and C. Sinigaglia, “Mirrors in the brain. How our minds share actions and emotions,” Schweizer Archiv für Neurologie und Psychiatrie, 159, No. 8, 517–517 (2008),  https://doi.org/10.4414/sanp.2008.02025.Google Scholar
  15. 15.
    T. Singer, “Empathy for pain involves the affective but not sensory components of pain,” Science, 303, No. 5661, 1157–1162 (2004),  https://doi.org/10.1126/science.1093535.CrossRefGoogle Scholar
  16. 16.
    W. D. Hutchison, K. D. Davis, A. M. Lozano, et al., “Pain-related neurons in the human cingulate cortex,” Nat. Neurosci., 2, No. 5, 403–405 (1999).CrossRefGoogle Scholar
  17. 17.
    G. Rizzolatti and M. A. Arbib, “Language within our grasp,” Trends Neurosci., 21, No. 5, 188–194 (1998),  https://doi.org/10.1016/s0166-2236(98)01260-0.CrossRefGoogle Scholar
  18. 18.
    N. Nishitani and R. Hari, “Viewing lip forms,” Neuron, 36, No. 6, 1211–1220 (2002),  https://doi.org/10.1016/s0896-6273(02)01089-9.CrossRefGoogle Scholar
  19. 19.
    M. Heiser, M. Iacoboni, F. Maeda, et al., “The essential role of Broca’s area in imitation,” Eur. J. Neurosci., 17, No. 5, 1123–1128 (2003),  https://doi.org/10.1046/j.1460-9568.2003.02530.x.CrossRefGoogle Scholar
  20. 20.
    G. Buccino, S. Vogt, A. Ritzl, et al., “Neural circuits underlying imitation learning of hand actions,” Neuron, 42, No. 2, 323–334 (2004),  https://doi.org/10.1016/s0896-6273(04)00181-3.CrossRefGoogle Scholar
  21. 21.
    V. Gallese, “The ‘shared manifold’ hypothesis: From mirror neurons to empathy,” J. Conscious Stud., 8, No. 5–7, 33–50 (2001).Google Scholar
  22. 22.
    G. Rizzolatti and L. Fogassi, “The mirror mechanism: recent findings and perspectives,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 369, No. 1644, 20130420 (2014),  https://doi.org/10.1098/rstb.2013.0420.CrossRefGoogle Scholar
  23. 23.
    R. D. Pascual-Marqui, “Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details,” Exp. Clin. Pharmacol., 24, 5–12 (2002).Google Scholar
  24. 24.
    M. Fuchs, J. Kastner, M. Wagner, et al., “A standardized boundary element method volume conductor model,” Clin. Neurophysiol., 113, No. 5, 702–712 (2002),  https://doi.org/10.1016/s1388-2457(02)00030-5.CrossRefGoogle Scholar
  25. 25.
    V. Jurcak, D. Tsuzuki, and I. Dan, “10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems,” NeuroImage, 34, No. 4, 1600–1611 (2007), https://doi. org/10.1016/j.neuroimage.2006.09.024.CrossRefGoogle Scholar
  26. 26.
    K. Fox, M. Dixon, S. Nijeboer, et al., “Functional neuroanatomy of meditation: A review and meta-analysis of 78 functional neuroimaging investigations,” Neurosci. Biobehav. Rev., 65, 208–228 (2016),  https://doi.org/10.1016/j.neubiorev.2016.03.021.CrossRefGoogle Scholar
  27. 27.
    A. R. Luriya, Functional Organization of the Brain. The Natural bases of Psychology, A. A. Smirnov et al. (eds.), Pedagogika, Moscow (1978).Google Scholar
  28. 28.
    L. O. Badalyan, Neuropathology: Textbook, Prosveshchenie, Moscow (1987), 2nd ed.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. N. Lebedeva
    • 1
    • 2
  • E. D. Karimova
    • 1
    • 2
    Email author
  • S. E. Burkitbaev
    • 1
  • V. Yu. Maltsev
    • 1
    • 2
  • A. B. Guekht
    • 2
  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Solov’ev Scientifi c and Applied Center for Psychoneurology, Moscow Health DepartmentMoscowRussia

Personalised recommendations