Advertisement

Neuroscience and Behavioral Physiology

, Volume 49, Issue 8, pp 987–995 | Cite as

Serotonin and Dopamine in Biological Models of Depression

  • A. V. Latanov
  • V. A. Korshunov
  • V. I. MaiorovEmail author
  • A. N. Serkov
Article
  • 14 Downloads

Depression in the biological models considered here can be split into two opposite patterns of changes in serotonin and dopamine levels, corresponding to passive and active stress response tactics [Selye, 1979] – ↑5HT, ↓DA and ↓5HT, ↑DA. Unavoidable pain stimulation, chronic moderate aversive stimulation, unavoidable social suppression, and learned helplessness in response to social defeats are characterized by the ↑5HT, ↓DA pattern. Aggressive behavior to an intruder, avoidance of an aggressive inhabitant, avoidance of pain stimulation, and injection of ketamine all activate the ↓5HT, ↑DA pattern. The physiological nucleus of learned helplessness and social avoidance may be the Pavlovian conditioned freezing reflex in response to a threat and the conditioned avoidance reaction, respectively. Further studies should address the following questions: how does neuron activity in the raphe nuclei change during forced swimming? Why does the increase in the serotonin level in response to antidepressants increase swimming while serotonin neurons are inhibited during swimming? Why is the increase in the serotonin level in the state of learned helplessness combined with suppression of active swimming?

Keywords

models of depression stress serotonin dopamine ketamine raphe nuclei ventromedial prefrontal cortex ventral tegmental area learned helplessness forced swimming test tail suspension test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbasi, J., “Ketamine minus the trip: new hope for treatment-resistant depression,” JAMA, 318, No. 20, 1964–1966 (2017).PubMedGoogle Scholar
  2. Admon, R. and Pizzagalli, D. A., “Dysfunctional reward processing in depression,” Curr. Opin. Psychol., 4, 114–118 (2015).PubMedGoogle Scholar
  3. Aghajanian, G. K. and Sanders-Bush, E., Neuropsychopharmacology: The Fifth Generation of Progress, Chpt. 2, Serotonin (2002) pp. 15–34.Google Scholar
  4. Amat, J., Aleksejev, R. M., Paul, E., et al., “Behavioral control over shock blocks behavioral and neurochemical effects of later social defeat,” Neuroscience, 165, 1031–1038 (2010).PubMedGoogle Scholar
  5. Amat, J., Baratta, M. V., Paul, E., et al., “Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus,” Nat. Neurosci., 8, No. 3, 365–371 (2005).PubMedGoogle Scholar
  6. Amat, J., Dolzani, S. D., Tilden, S., et al., “Previous ketamine produces an enduring blockade of neurochemical and behavioral effects of uncontrollable stress,” J. Neurosci., 36, No. 1, 153–161 (2016).PubMedPubMedCentralGoogle Scholar
  7. Amat, J., Paul, E., Watkins, L. R., and Maier, S. F., “Activation of the ventral medial prefrontal cortex during an uncontrollable stressor reproduces both the immediate and long-term protective effects of behavioral control,” Neuroscience, 154, 1178–1186 (2008).PubMedPubMedCentralGoogle Scholar
  8. Artigas, F. and Bortolozzi, A., “Therapeutic potential of conjugated siRNAs for the treatment of major depressive disorder,” Neuropsychopharmacology, 42, No. 1, 371 (2017).PubMedGoogle Scholar
  9. Barch, D. M., Pagliaccio, D., and Luking, K., “Mechanisms underlying motivational deficits in psychopathology: similarities and differences in depression and schizophrenia,” Curr. Top. Behav. Neurosci., 27, 411–49 (2016).PubMedGoogle Scholar
  10. Bath, K. G., Russo, S. J., Pleil, K. E., et al., “Circuit and synaptic mechanisms of repeated stress: Perspectives from differing contexts, duration, and development,” Neurobiol. Stress, 7, 137–151 (2017).PubMedPubMedCentralGoogle Scholar
  11. Belujon, P. and Grace, A. A., “Dopamine system dysregulation in major depressive disorders,” Int. J. Neuropsychopharmacol., 20, No. 12, 1036–1046 (2017).PubMedPubMedCentralGoogle Scholar
  12. Belujon, P. and Grace, A. A., “Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity,” Biol. Psychiatry, 76, 927–936 (2014).PubMedPubMedCentralGoogle Scholar
  13. Berridge, K. C. and Robinson, T. E., “Liking, wanting, and incentive sensitization theory of addiction,” Am. Psychol., 71, No. 8, 670–679 (2016).PubMedPubMedCentralGoogle Scholar
  14. Berridge, K. C. and Robinson, T. E., “What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience,” Brain Res. Rev., 28, No. 3, 309–69 (1998).PubMedGoogle Scholar
  15. Bortolozzi, A., Castane, A., Semakova, J., et al., “Selective siRNA-mediated suppression of 5HT1A autoreceptors evokes strong antidepressant-like effects,” Mol. Psychiatry, 17, No. 6, 612–623 (2012).PubMedGoogle Scholar
  16. Bosker, F. J., Cremers, T. I. F. H., Jongsma, M. E., et al., “Acute and chronic effects of citalopram on postsynaptic 5-hydroxytryptamine1A receptor- mediated feedback: a microdialysis study in the amygdale,” J. Neurochem., 76, 1645–1653 (2001).PubMedGoogle Scholar
  17. Boureau, Y.-L. and Dayan, P., “Opponency revisited: competition and cooperation between dopamine and serotonin,” Neuropsychopharmacology, 36, No. 1, 74–97 (2011).PubMedGoogle Scholar
  18. Bruzos-Cidon, C., Miguelez, C., Rodríguez, J. J., et al., “Altered neuronal activity and differential sensitivity to acute antidepressants of locus coeruleus and dorsal raphe nucleus in Wistar Kyoto rats: A comparative study with Sprague Dawley and Wistar rats,” Eur. Neuropsychopharmacol., 24, 1112–1122 (2014).PubMedGoogle Scholar
  19. Burghardt, N. S., and Bauer, E. P., “Acute and chronic effects of selective serotonin reuptake inhibitor treatment on fear conditioning: implications for underlying fear circuits,” Neuroscience, 247, 253–272 (2013).PubMedGoogle Scholar
  20. Burghardt, N. S., Bush, D. E. A., McEwen, B. S., and LeDoux, J. E., “Acute SSRIs increase conditioned fear expression: blockade with a 5HT2C receptor antagonist,” Biol. Psychiatry, 62, No. 10, 1111–1118 (2007).PubMedPubMedCentralGoogle Scholar
  21. Campese, V. D., Sears, R. M., Moscarello, J. M., et al., “The neural foundations of reaction and action in aversive motivation,” Curr. Top. Behav. Neurosci., 27, 171–195 (2016).PubMedGoogle Scholar
  22. Carhart-Harris, R. L. and Nutt, D. J., “Serotonin and brain function: a tale of two receptors,” J. Psychopharmacol., 31, No. 9, 1091–1120 (2017).PubMedPubMedCentralGoogle Scholar
  23. Challis, C. and Berton, O., “Top-down control of serotonin systems by the prefrontal cortex: a path towards restored socioemotional function in depression,” ACS Chem. Neurosci., 6, No. 7, 1040–1054 (2015).PubMedPubMedCentralGoogle Scholar
  24. Challis, C., Beck, S. G., and Berton, O., “Optogenetic modulation of descending prefrontocortical inputs to the dorsal raphe bidirectionally bias socioaffective choices after social defeat,” Front. Behav. Neurosci., 8, Art. 43, 1–14 (2014).Google Scholar
  25. Chaudhury, D., Liu, H., and Han, M.-H., “Neuronal correlates of depression,” Cell. Mol. Life Sci., 72, No. 24, 4825–4848 (2015).PubMedPubMedCentralGoogle Scholar
  26. Chaudhury, D., Walsh, J. J., Friedman, A. K., et al., “Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons,” Nature, 493, No. 7433, 532–536 (2013).PubMedGoogle Scholar
  27. Cowen, P. J. and Browning, M., “What has serotonin to do with depression?” World Psychiatry, 14, No. 2, 158–160 (2015).PubMedPubMedCentralGoogle Scholar
  28. Darvas, M., Fadok, J. P., and Palmiter, R. D., “Requirement of dopamine signaling in the amygdale and striatum for learning and maintenance of a conditioned avoidance response,” Learn. Mem., 18, 136–143 (2011).PubMedPubMedCentralGoogle Scholar
  29. Davis, J. M., Giakas, W. J., Qu, J., et al., “Should we treat depression with drugs or psychological interventions? A reply to Ioannidis,” Philos. Ethics Hum. Med., 6, 8 (2011).Google Scholar
  30. De Kloet, E. R. and Molendijk, M. L., “Coping with the forced swim stressor: towards understanding an adaptive mechanism,” Neural Plast., 2016, Art. ID 6503162.Google Scholar
  31. Dolzani, S. D., Baratta, M. V., Amat, J., et al., “Activation of a habenulo-raphe circuit is critical for the behavioral and neurochemical consequences of uncontrollable stress in the male rat,” eNeuro, 3, No. 5, 1–17 (2016).Google Scholar
  32. Duman, R. S., Aghajanian, G. K., Sanacora, G., and Krystal, J. H., “Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants,” Nat. Med., 22, No. 3, 238–249 (2016).PubMedPubMedCentralGoogle Scholar
  33. Fischer, A. G. and Ullsperger, M., “An update on the role of serotonin and its interplay with dopamine for reward,” Front. Hum. Neurosci., 11, 1–10 (2017).Google Scholar
  34. Fonseca, M. S., Murakami, M., and Mainen, Z. F., “Activation of dorsal raphe serotonergic neurons promotes waiting but is not reinforcing,” Curr. Biol., 25, 1–10 (2015).Google Scholar
  35. Forgeard, M. J. C., Haigh, E. A. P., Beck, A. T., et al., “Beyond depression: towards a process-based approach to research, diagnosis, and treatment,” Clin, Psychol., 18, No. 4, 275–299 (2011).Google Scholar
  36. Fuchicami, F., Thomas, A., Liu, R., et al., “Optogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions,” Proc. Natl. Acad. Sci. USA, 112, No. 26, 8106–8111 (2015).Google Scholar
  37. Galyamina, A. G., Kovalenko, I. L., Smagin, D. A., and Kudryavtseva, N. N., “Interaction of depression and anxiety in the development of mixed anxious-depressive disorder. Experimental studies of the mechanisms of comorbidity,” Zh. Vyssh. Nerv. Deyat., 66, No. 2, 181–201 (2016).Google Scholar
  38. Golden, S. A., Covington III, H. E., Berton, O., and Russo, S. J., “A standardized protocol for repeated social defeat stress in mice,” Nat. Protoc., 6, No. 8, 1183–1191 (2011).PubMedPubMedCentralGoogle Scholar
  39. Goncharov, I. A., Oblomov, GIKhL, Moscow (1953).Google Scholar
  40. Grigor’yan, G. A. and Gulyaeva, N. V., “Modeling of depression in animals: behavior as the basis of a methodology and assessment and classification criteria,” Zh. Vyssh. Nerv. Deyat., 65, No. 6, 643–660 (2015).Google Scholar
  41. Hajós, M., Hoffmann, W. E., and Weaver, R. J., “Regulation of septo-hippocampal activity by 5-hydroxytryptamine2C receptors,” J. Pharmacol. Exp. Ther., 306, No. 2, 605–615 (2003).PubMedGoogle Scholar
  42. Hamani, C., Diwan, M., Macedo, C. E., et al., “AntidepressantLike effects of medial prefrontal cortex deep brain stimulation in rats,” Biol. Psychiatry, 67, 117–124 (2010).PubMedGoogle Scholar
  43. Hervás, I., Queiroz, C. M. T., Adell, A., and Artigas, F., “Role of uptake inhibition and autoreceptor activation in the control of 5HT release in the frontal cortex and dorsal hippocampus of the rat,” Brit. J. Pharmacol., 130, 160–166 (2000).Google Scholar
  44. Heshmati, M. and Russo, S. J., “Anhedonia and the brain reward circuitry in depression,” Curr. Behav. Neurosci. Rep., 2, No. 3, 146–153 (2015).PubMedPubMedCentralGoogle Scholar
  45. Hjorth, S., Bengtsson, H. J., Kullberg, A., et al., “Serotonin autoreceptor function and antidepressant drug action,” J. Psychopharmacol., 14, No. 2, 177–185 (2000).PubMedGoogle Scholar
  46. Holly, E. N. and Miczek, K. A., “Ventral tegmental area dopamine revisited: effects of acute and repeated stress,” Psychopharmacology (Berlin), 233, No. 2, 163–86 (2016).Google Scholar
  47. Ilango, A., Kesner, A. J., Broker, C. J., et al., “Phasic excitation of ventral tegmental dopamine neurons potentiates the initiation of conditioned approach behavior: parametric and reinforcement-schedule analyses,” Front. Behav. Neurosci., 8, 155 (2014).PubMedPubMedCentralGoogle Scholar
  48. Ioannidis, J. P., “Effectiveness of antidepressants: an evidence myth constructed from a thousand randomized trials?” Philos. Ethics Humanit. Med., 3, 14 (2008).PubMedPubMedCentralGoogle Scholar
  49. Kato, T., Kasahara, T., Kubota-Sakashita, M., et al., “Animal models of recurrent or bipolar depression,” Neuroscience, 321, 189–196 (2016).PubMedGoogle Scholar
  50. Khan, A. and Brown, W. A., “Antidepressants versus placebo in major depression: an overview,” World Psychiatry, 14, 294–300 (2015).PubMedPubMedCentralGoogle Scholar
  51. Knowland, D. and Lim, B. K., “Circuit-based frameworks of depressive behaviors: The role of reward circuitry and beyond,” Pharmacol. Biochem. Behav. (2018), doi  https://doi.org/10.1016/j.pbb.2017.12.010.Google Scholar
  52. Knowland, D., Lilascharoen, V., Pacia, C. P., et al., “Distinct ventral pallidal neural populations mediate separate symptoms of depression,” Cell, 170, 1–14 (2017).Google Scholar
  53. Koob, G. F., “The dopamine anhedonia hypothesis: a pharmacological phrenology,” Behav. Brain Sci., 5, 63–64 (1982).Google Scholar
  54. Kudryavtseva, N. N. and Avgustinovich, D. F., “Molecular mechanisms of social behavior: commentary on the report by Berton et al.,” Neironauki, 4, No. 6, 33–35 (2006).Google Scholar
  55. Kudryavtseva, N. N., “Serotoninergic control of aggressive behavior: new approaches – new interpretations (review),” Zh. Vyssh. Nerv. Deyat., 65, No. 5, 546–563 (2015).Google Scholar
  56. Kudryavtseva, N. N., “The sensory contact model for the study of aggressive and submissive behaviors in male mice,” Aggress. Behav., 17, No. 5, 285–291 (1991).Google Scholar
  57. Kudryavtseva, N. N., Bakshtanovskaya, I. V., and Koryakina, L. A., “Social model of depression in mice of C57BL/6J strain,” Pharmacol. Biochem. Behav., 38, 315–320 (1991).PubMedGoogle Scholar
  58. Kudryavtseva, N. N., Smagin, D. A., Kovalenko, I. L., and Vishnivetskaya, G. B., “Repeated positive fighting experience in male inbred mice,” Nat. Protoc., 9, No. 11, 2705–2717 (2014).PubMedGoogle Scholar
  59. Laurent, V., Leung, B., Maidment, N., Balleine, B. W., “μ- and δ-opioid-related processes in the accumbens core and shell differentially mediate the influence of reward-guided and stimulus-guided decisions on choice,” J. Neurosci., 32, No. 5, 1875–1883 (2012).PubMedPubMedCentralGoogle Scholar
  60. Laurent, V., Wong, F. L., and Balleine, B. W., “The lateral habenula and its input to the rostromedial tegmental nucleus mediates outcome-specific conditioned inhibition,” J. Neurosci., 37, No. 45, 10932–10942 (2017).PubMedPubMedCentralGoogle Scholar
  61. LeDoux, J. E. and Pine, D. S., “Using neuroscience to help understand fear and anxiety: a two-system framework,” Am. J. Psychiatry, 173, 1083–1093 (2016).PubMedGoogle Scholar
  62. Li, B., Piriz, J., Mirrione, M., et al., “Synaptic potentiation onto habenula neurons in the learned helplessness model of depression,” Nature, 470, No. 7335, 535–539 (2011).PubMedPubMedCentralGoogle Scholar
  63. Lisman, J., Grace, A. A., and Duzel, E., “A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP,” Trends Neurosci., 34, No. 10, 536–547 (2011).PubMedPubMedCentralGoogle Scholar
  64. Liu, B., Liu, J., Wang, M., et al., “From serotonin to neuroplasticity: evolvement of theories for major depressive disorder,” Front. Cell. Neurosci., 11, 305, 1–9 (2017).Google Scholar
  65. Liu, R., Jolas, T., and Aghajanian, G., “Serotonin 5HT2 receptors activate local GABA inhibitory inputs to serotonergic neurons of the dorsal raphe nucleus,” Brain Res., 873, 34–45 (2000).PubMedGoogle Scholar
  66. Liu, R.-J., Ota, K. T., Dutheil, S., et al., “Ketamine strengthens CRFactivated amygdala inputs to basal dendrites in mPFC layer V pyramidal cells in the prelimbic but not infralimbic subregion, a key suppressor of stress responses,” Neuropsychopharmacology, 40, No. 9, 2066–2075 (2015).PubMedPubMedCentralGoogle Scholar
  67. Maier, S. F. and Seligman, M. E. P., “Learned helplessness at fifty: insights from neuroscience,” Psychol. Rev., 123, No. 4, 349–367 (2016).PubMedPubMedCentralGoogle Scholar
  68. Marcinkiewcz, C. A., Mazzone, C. M., D’Agostino, G., et al., “Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala,” Nature, 537, No. 7618, 97–101 (2016).PubMedPubMedCentralGoogle Scholar
  69. Mileykovskiy, B. and Morales, M., “Duration of inhibition of ventral tegmental area dopamine neurons encodes a level of conditioned fear,” J. Neurosci., 31, No. 20, 7471–7476 (2011).PubMedPubMedCentralGoogle Scholar
  70. Miyazaki, K. W., Miyazaki, K., Tanaka, K. F., et al., “Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards,” Curr. Biol., 24, No. 17, 2033–2040 (2014).PubMedGoogle Scholar
  71. Miyazaki, K., Miyazaki, K. W., and Doya, K., “Activation of dorsal raphe serotonin neurons underlies waiting for delayed rewards,” J. Neurosci., 31, No. 2, 469–479 (2011).PubMedPubMedCentralGoogle Scholar
  72. Miyazaki, K., Miyazaki, K. W., and Doya, K., “The role of serotonin in the regulation of patience and impulsivity,” Mol. Neurobiol., 45, 213–224 (2012).PubMedPubMedCentralGoogle Scholar
  73. Molendijk, M. L. and de Kloet, E. R., “Immobility in the forced swim test is adaptive and does not reflect depression,” Psychoneuroendocrinology, 62, 389–391 (2015).PubMedGoogle Scholar
  74. Moscarello, J. M. and LeDoux, J. E., “Active avoidance learning requires prefrontal suppression of amygdala-mediated defensive reactions,” J. Neurosci., 33, No. 9, 3815–3823 (2013).PubMedPubMedCentralGoogle Scholar
  75. Mosolov, S. N., Anxiety and Depression: Comorbidity and Therapy, Artinfo Publishing, Moscow (2007).Google Scholar
  76. Nakanishi, S., Hikida, T., and Yawata, S., “Distinct dopaminergic control of the direct and indirect pathways in reward-based and avoidance learning behaviors,” Neuroscience, 282, 49–59 (2014).PubMedGoogle Scholar
  77. Ohmura, Y., Tanaka, K. F., Tsunematsu, T., et al., “Optogenetic activation of serotonergic neurons enhances anxiety-like behaviour in mice,” Int. J. Neuropsychopharmacol., 17, 1777–1783 (2014).PubMedGoogle Scholar
  78. Pavlova, I. V. and Rysakova, M. P., “Effects of administration of serotonin 5HT1A receptor ligands into the amygdala on the behavior of rats with different manifestations of conditioned reflex fear,” Zh. Vyssh. Nerv. Deyat., 66, No. 6, 710–724 (2016).Google Scholar
  79. Pine, D. S. and LeDoux, J. E., “Elevating the role of subjective experience in the clinic: response to Fanselow and Pennington,” Am. J. Psychiatry, 174, No. 11, 1121–1122 (2017).PubMedGoogle Scholar
  80. Robinson, S., Sandstrom, S. M., Denenberg, V. H., and Palmiter, R. D., “Distinguishing whether dopamine regulates liking, wanting, and/or learning about rewards,” Behav. Neurosci., 119, No. 1, 5–15 (2005).PubMedGoogle Scholar
  81. Salamone, J. D., Yohn, S. E., López-Cruz, L., et al., “Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology,” Brain, 139, No. 5, 1325–1347 (2016).PubMedPubMedCentralGoogle Scholar
  82. Saul’skaya, N. B. and Marchuk, O. E., “Serotoninergic stimulation of the medial prefrontal cortex during acquisition of a conditioned reflex reaction to fear promotes the formation of generalized fear,” Zh. Vyssh. Nerv. Deyat., 68 (2018).Google Scholar
  83. Schultz, W., Stauffer, W. R., and Lak, A., “The phasic dopamine signal maturing: from reward via behavioural activation to formal economic utility,” Curr. Opin. Neurobiol., 43, 139–148 (2017).PubMedGoogle Scholar
  84. Selye, G., Stress without Distress, Moscow (1979).Google Scholar
  85. Shenhav, A. and Botvinick, M. M., “Motivated action: new light on prefrontal-neuromodulatory circuits,” Curr. Biol., 23, No. 4, R161–R162 (2013).PubMedGoogle Scholar
  86. Shiflett, M. W. and Balleine, B. W., “At the limbic-motor interface: disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation,” Eur. J. Neurosci., 32, 1735–1743 (2010).PubMedPubMedCentralGoogle Scholar
  87. Slattery, D. A., Neumann, I. D., and Cryan, J. F., “Transient inactivation of the infralimbic cortex induces antidepressant-like effects in the rat,” J. Psychopharmacol., 25, No. 10, 1295–1303 (2011).PubMedGoogle Scholar
  88. Srejic, L. R., Hamani, C., and Hutchison, W. D., “High-frquency stimulation of the medial prefrontal cortex decreases cellular firing in the dorsal raphe,” Eur. J. Neurosci., 41, No. 9, 1219–26 (2015).PubMedPubMedCentralGoogle Scholar
  89. Teissier, A., Chemiakine, A., Inbar, B., et al., “Activity of raphe serotonergic neurons controls emotional behaviors,” Cell Rep., 13, No. 9, 1965–1976 (2015).PubMedPubMedCentralGoogle Scholar
  90. Thomson, A. A. and Martinet, A. V., A Practical English Grammar, Oxford University Press (1986).Google Scholar
  91. Treadway, M. T. and Zald, D. H., “Reconsidering anhedonia in depression: lessons from translational neuroscience,” Neurosci. Biobehav. Rev., 35, No. 3, 537–555 (2011).PubMedGoogle Scholar
  92. Treadway, M. T., “The Neurobiology of motivational deficits in depression – an update on candidate pathomechanisms,” Curr. Top. Behav. Neurosci., 27, 337–55 (2015).Google Scholar
  93. Tye, K. M., Mirzabekov, J. J., Warden, M. R., et al., “Dopamine neurons modulate neural encoding and expression of depression-related behaviour,” Nature, 493, No. 7433, 537–541 (2013).PubMedGoogle Scholar
  94. Urban, D. J., Zhu, H., Marcinkiewcz, C. A., et al., “Elucidation of the behavioral program and neuronal network encoded by dorsal raphe serotonergic neurons,” Neuropsychopharmacology, 41, No. 5, 1404–15 (2016).PubMedGoogle Scholar
  95. Veerakumar, A., Challis, C., Gupta, P., et al., “Antidepressant-like effects of cortical deep brain stimulation coincide with pro-neuroplastic adaptations of serotonin systems,” Biol. Psychiatry, 76, No. 3, 203– 212 (2014).PubMedGoogle Scholar
  96. Warden, M. R., Selimbeyoglu, A., Mirzabekov, J. J., et al., “A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge,” Nature, 492, No. 7429, 428–432 (2012).PubMedPubMedCentralGoogle Scholar
  97. Wassum, K. M., Ostlund, S. B., Maidment, N. T., and Balleine, B. W., “Distinct opioid circuits determine the palatability and the desirability of rewarding events,” Proc. Natl. Acad. Sci. USA, 106, No. 30, 12512–12517 (2009).PubMedGoogle Scholar
  98. Weissbourd, B., Ren, J., DeLoach, K. E., et al., “Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons,” Neuron, 83, No. 3, 645–662 (2014).PubMedPubMedCentralGoogle Scholar
  99. Wenzel, J. M., Oleson, E. B., Gove, W. N., et al., “Phasic dopamine signals in the nucleus accumbens that cause active avoidance require endocannabinoid mobilization in the midbrain,” Curr. Biol., 28, 1–13 (2018).Google Scholar
  100. Wenzel, J. M., Rauscher, N. A., Cheer, J. F., and Oleson, E. B., “A role for phasic dopamine release within the nucleus accumbens in encoding aversion: a review of the neurochemical literature,” ACS Chem. Neurosci., 6, No. 1, 16–26 (2015).PubMedGoogle Scholar
  101. Wise, R. A., “Dual roles of dopamine in food and drug seeking: the drive-reward paradox,” Biol. Psychiatry, 73, No. 9, 819–826 (2013).PubMedGoogle Scholar
  102. Xiao, J., Song, M., Li, F., et al., “Effects of GABA microinjection into dorsal raphe nucleus on behavior and activity of lateral habenular neurons in mice,” Exp. Neurol., 298, 23–30 (2017).PubMedGoogle Scholar
  103. Xu, S., Das, G., Hueske, E., and Tonegawa, S., “Dorsal raphe serotonergic neurons control intertemporal choice under trade-off,” Curr. Biol., 27, 1–9 (2017).Google Scholar
  104. Yadid, G. and Friedman, A., “Dynamics of the dopaminergic system as a key component to the understanding of depression,” Prog. Brain Res., 172, 265–286 (2008).PubMedGoogle Scholar
  105. Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G. S. R., et al., “A critical time window for dopamine actions on the structural plasticity of dendritic spines,” Science, 345, No. 6204, 1616–1620 (2014).PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Latanov
    • 1
  • V. A. Korshunov
    • 2
  • V. I. Maiorov
    • 1
    Email author
  • A. N. Serkov
    • 1
  1. 1.Department of Higher Nervous ActivityLomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations