Neuroscience and Behavioral Physiology

, Volume 49, Issue 8, pp 954–961 | Cite as

Organization of Frontostriate Interactions with the Involvement of the Brain Error Detector in Supporting Deceptive and Honest Manipulative Actions

  • M. V. KireevEmail author
  • A. D. Korotkov
  • I. A. Kotomin
  • S. V. Medvedev

We report here studies on the cerebral mechanisms of conscious deceptive and honest manipulative actions. Analysis of cause-effect relationships showed that the execution of both deceptive and honest actions with the aim of manipulating the opinion of an opponent was characterized by a bottom-up interaction between components of the frontostriate system: the caudate nuclei modulated the activity of the prefrontal cortex. This result confirms the hypothesis that the cerebral error detection (ED) mechanism is involved in selection of the appropriate version of an action during execution of manipulative actions.


dynamic cause-effect modeling frontostriate system deception error detector 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. V. Kireev, A. D. Korotkov, and S. V. Medvedev, “Functional magnetic resonance tomography imaging of the cerebral support of conscious deception,” Fiziol. Cheloveka, 38, No. 1, 41–51 (2012).PubMedGoogle Scholar
  2. 2.
    M. V. Kireev, A. D. Korotkov, Yu. I. Polyakov, et al., “The cerebral error detection mechanism – a PET study,” Ros. Fiziol. Zh., 97, No. 10, 1060–1065 (2011).Google Scholar
  3. 3.
    M. V. Kireev, N. S. Medvedeva, A. D. Korotkov, and S. V. Medvedev, “Characteristics of the functional interaction of the caudate nucleus and the inferior frontal gyrus in the process supporting deceptive actions,” Fiziol. Cheloveka, 41, No. 1, 29–34 (2015).PubMedGoogle Scholar
  4. 4.
    M. V. Kireev, M. G. Starchenko, C. B. Pakhomov, and C. B. Medvedev, “Stages in the cerebral support of knowingly deceptive responses,” Fiziol. Cheloveka, 33, No. 6, 5–13 (2007).PubMedGoogle Scholar
  5. 5.
    M. V. Kireev, C. B. Pakhomov, and C. B. Medvedev, “Studies of the mechanisms of the cerebral ‘error detection’ mechanisms in deceptive responses in normal conditions and under the influence of alcohol,” Fiziol. Cheloveka, 34, No. 2, 13–22 (2008).PubMedGoogle Scholar
  6. 6.
    V. V. Sidorina, G. Kh. Merzhanova, E. P. Kuleshova, and A. V. Zaleshin, “Cooperative activity of neurons in the visual, frontal, and sensorimotor areas of the cortex and the dorsal striatum on execution of a behavioral program in conditions of a choice of strategy,” Zh. Vyssh. Nerv. Deyat., 62, No. 2, 1–12 (2012).Google Scholar
  7. 7.
    N. Abe and J. D. Greene, “Response to anticipated reward in the nucleus accumbens predicts behavior in an independent test of honesty,” J. Neurosci., 34, 10564–10572 (2014).PubMedPubMedCentralGoogle Scholar
  8. 8.
    N. Abe, T. Fujii, A. Ito, et al., “The neural basis of dishonest decisions that serve to harm or help the target,” Brain Cogn., 90, 41–49 (2014).PubMedGoogle Scholar
  9. 9.
    N. Abe, M. Suzuki, T. Tsukiura, et al., “Dissociable roles of prefrontal and anterior cingulate cortices in deception,” Cereb. Cortex, 16, 192–199 (2006).PubMedGoogle Scholar
  10. 10.
    N. P. Bechtereva and V. B. Gretchin, “Physiological foundations of mental activity,” Int. Rev. Neurobiol., 11, 329–352 (1968).PubMedGoogle Scholar
  11. 11.
    M. M. Botvinick, T. S. Braver, D. M. Barch, et al., “Conflict monitoring and cognitive control,” Psychol. Rev., 108, 624–652 (2001).PubMedGoogle Scholar
  12. 12.
    S. E. Christ, D. C. Van Essen, J. M. Watson, et al., “The contributions of prefrontal cortex and executive control to deception: evidence from activation likelihood estimate meta-analyses,” Cereb. Cortex, 19, 1557–1566 (2009).PubMedGoogle Scholar
  13. 13.
    J. Daunizeau, O. David, and K. E. Stephan, “Dynamic causal modelling: A critical review of the biophysical and statistical foundations,” Neuroimage, 58, No. 2, 312–322 (2011).PubMedGoogle Scholar
  14. 14.
    E. Debey, J. De Houwer, and B. Verschuere, “Lying relies on the truth,” Cognition, 132, 324–334 (2014).PubMedGoogle Scholar
  15. 15.
    E. Debey, R. K. Ridderinkhof, J. De Houwer, et al., “Suppressing the truth as a mechanism of deception: delta plots reveal the role of response inhibition in lying,” Conscious. Cogn., 37, 148–159 (2015).PubMedGoogle Scholar
  16. 16.
    X. P. Ding, X. Gao, G. Fu, and K. Lee, “Neural correlates of spontaneous deception: a functional near-infrared spectroscopy (fNIRS) study,” Neuropsychologia, 51, 704–712 (2013).PubMedPubMedCentralGoogle Scholar
  17. 17.
    J. Duncan, “The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour,” Trends Cogn. Sci., 14, No. 4, 172–179 (2010).PubMedGoogle Scholar
  18. 18.
    K. J. Friston, L. Harrison, and W. Penny, “Dynamic causal modelling,” Neuroimage, 19, 1273–1302 (2003).PubMedGoogle Scholar
  19. 19.
    K. J. Friston, Statistical Parametric Mapping: The Analysis of Functional Brain Images, Elsevier Ltd., Boston (2007).Google Scholar
  20. 20.
    G. Ganis and J. P. Keenan, “The cognitive neuroscience of deception,” Soc. Neuroscience, 4, 465–472 (2009).Google Scholar
  21. 21.
    G. Ganis, S. M. Kosslyn, S. Stose, et al., “Neural correlates of different types of deception: an fMRI investigation,” Cereb. Cortex, 13, 830–836 (2003).PubMedGoogle Scholar
  22. 22.
    J. Grahn, J. Parkinson, and A. M. Owen, “The cognitive functions of the caudate nucleus,” Prog. Neurobiol., 86, No. 3, 141–155 (2008).PubMedGoogle Scholar
  23. 23.
    J. D. Greene and J. M. Paxton, “Patterns of neural activity associated with honest and dishonest moral decisions,” Proc. Natl. Acad. Sci. USA, 106, No. 30, 12,506–20,511 (2009).Google Scholar
  24. 24.
    A. Ito, N. Abe, T. Fujii, et al., “The role of the dorsolateral prefrontal cortex in deception when remembering neutral and emotional events,” Neurosci. Res., 69, No. 2, 121–128 (2011).PubMedGoogle Scholar
  25. 25.
    M. Jahanshahi, I. Obeso, J. C. Rothwell, and J. A. Obeso, “A fronto- striato-subthalamic-pallidal network for goal-directed and habitual inhibition, “ Nat. Rev. Neurosci., 16, No. 12, 719–732 (2015).PubMedGoogle Scholar
  26. 26.
    S. Jahfari, F. Verbruggen, M. J. Frank, et al., “How preparation changes the need for top-down control of the basal ganglia when inhibiting premature actions,” J. Neurosci., 32, No. 32, 10870–10878 (2012).PubMedPubMedCentralGoogle Scholar
  27. 27.
    M. Kireev, A. Korotkov, N. Medvedeva, and S. Medvedev, “Possible role of an error detection mechanism in brain processing of deception: PET-fMRI study,” Int. J. Psychophysiol., 90, No. 3, 291–299 (2013).PubMedGoogle Scholar
  28. 28.
    M. Kireev, A. Korotkov, N. Medvedeva, et al., “Deceptive but not honest manipulative actions are associated with increased interaction between middle and inferior frontal gyri,” Front. Neurosci., 11, 482 (2017).PubMedPubMedCentralGoogle Scholar
  29. 29.
    E. Koechlin and C. Summerfield, “An information theoretical approach to prefrontal executive function,” Trends Cogn. Sci., 11, No. 6, 229–235 (2007).PubMedGoogle Scholar
  30. 30.
    F. Kouneiher, S. Charron, and E. Koechlin, “Motivation and cognitive control in the human prefrontal cortex,” Nat. Neurosci., 12, No. 7, 939–945 (2009).PubMedGoogle Scholar
  31. 31.
    D. D. Langleben, L. Schroeder, J. A. Maldjian, et al., “Brain activity during simulated deception: an event-related functional magnetic resonance study, “ Neuroimage, 15, No. 3, 727–732 (2002).PubMedGoogle Scholar
  32. 32.
    T. M. C. Lee, R. K. C. Au, H. L. Liu, et al., “Are errors differentiable from deceptive responses when feigning memory impairment? an fMRI study,” Brain Cogn., 69, No. 2, 406–412 (2009).PubMedGoogle Scholar
  33. 33.
    T. M. C. Lee, H. Liu, L. Tan, et al., “Lie detection by functional magnetic resonance imaging,” Hum. Brain Mapp., 15, No. 3, 157–164 (2002).PubMedGoogle Scholar
  34. 34.
    O. V. Lungu, M. M. Binenstock, M. A. Pline, et al., “Neural changes in control implementation of a continuous task,” J. Neurosci., 27, No. 11, 3010–3016 (2007).PubMedPubMedCentralGoogle Scholar
  35. 35.
    A. Marchewka, K. Jednorog, M. Falkiewicz, et al., “Sex, lies and fMRI-gender differences in neural basis of deception,” PLoS One, 7, No. 8, e43076 (2012).PubMedPubMedCentralGoogle Scholar
  36. 36.
    R. C. Oldfield, “The assessment and analysis of handedness: the Edinburgh inventory,” Neuropsychologia, 9, No. 1, 97–113 (1971).PubMedGoogle Scholar
  37. 37.
    W. D. Penny, “Comparing dynamic causal models,” Neuroimage, 22, No. 3, 1157–1172 (2004).PubMedGoogle Scholar
  38. 38.
    K. L. Phan, A. Magalhaes, and T. Ziemlewicz, “Neural correlates of telling lies: a functional magnetic resonance imaging study at 4 Tesla,” Acad. Radiol., 12, No. 2, 164–172 (2005).PubMedGoogle Scholar
  39. 39.
    L. Rigoux, K. E. Stephan, K. J. Friston, and J. Daunizeau, “Bayesian model selection for group studies – revisited,” Neuroimage, 84, 971–985 (2014).PubMedGoogle Scholar
  40. 40.
    K. E. Sip, M. Lynge, M. Wallentin, et al., “The production and detection of deception in an interactive game,” Neuropsychologia, 48, No. 12, 3619–3626 (2010).PubMedGoogle Scholar
  41. 41.
    K. E. Sip, J. C. Skewes, J. L. Marchant, et al., “What if I get busted? deception, choice, and decision-making in social interaction,” Front. Neurosci., 6, 58 (2012).PubMedPubMedCentralGoogle Scholar
  42. 42.
    S. A. Spence, M. D. Hunter, T. F. Farrow, et al., “A cognitive neurobiological account of deception: evidence from functional neuroimaging,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 359, No. 1451, 1755–1762 (2004).PubMedPubMedCentralGoogle Scholar
  43. 43.
    K. Suchotzki, B. Verschuere, B. Van Bockstaele, et al., “Lying takes time: a meta-analysis on reaction time measures of deception,” Psychol. Bull., 143, No. 4, 428–453 (2017).PubMedGoogle Scholar
  44. 44.
    H. Tan, B. Zavala, A. Pogosyan, et al., “Human subthalamic nucleus in movement error detection and its evaluation during visuomotor adaptation,” J. Neurosci., 34, No. 50, 16744–16754 (2014).PubMedPubMedCentralGoogle Scholar
  45. 45.
    M. Vink, R. S. Kahn, M. Raemaekers, et al., “Function of striatum beyond inhibition and execution of motor responses,” Hum. Brain Mapp., 25, No. 3, 336–344 (2005).PubMedGoogle Scholar
  46. 46.
    K. G. Volz, K. Vogeley, M. Tittgemeyer, et al., “The neural basis of deception in strategic interactions,” Front. Behav. Neurosci., 9, 27 (2015).PubMedPubMedCentralGoogle Scholar
  47. 47.
    A. Vrij, Detecting Lies and Deceit: Pitfalls and Opportunities, John Wiley & Sons Ltd., Chichester (2008), 2nd ed.Google Scholar
  48. 48.
    T. D. Wager, C. Y. Sylvester, S. C. Lacey, et al., “Common and unique components of response inhibition revealed by fMRI,” Neuroimage, 27, No. 2, 323–340 (2005).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. V. Kireev
    • 1
    • 2
    Email author
  • A. D. Korotkov
    • 1
  • I. A. Kotomin
    • 1
  • S. V. Medvedev
    • 1
  1. 1.Bekhtereva Institute of the Human BrainRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations