Neuroscience and Behavioral Physiology

, Volume 49, Issue 3, pp 306–314 | Cite as

Comparison of the Chronic Anticonvulsant Activity and Safety of IEM-1913, Sodium Valproate, IEM-1676, and Memantine in Experiments on Rats

  • V. E. GmiroEmail author
  • S. E. Serdyuk
  • O. S. Veselkina

Chronic oral administration of the selective AMPA receptor blocker IEM-1676 and the combined NMDA and AMPA receptor blocker IEM-1913 decreased the severity of convulsions kindled by corasol (pentylenetetrazole) and also the number of rats with full kindling by 20–40% more than the standard antiepileptic sodium valproate and the selective NMDA receptor blocker memantine. IEM-1913 and IEM-1676 induced anticonvulsant effects over wide dose ranges, of 0.03–1 and 3–40 mg/kg, respectively, while memantine and sodium valproate were effective only in narrow dose ranges, of 12–20 and 100–200 mg/kg, respectively. Sodium valproate, memantine, and IEM-1676 had low therapeutic indexes (TD50/ED50), of 1.7, 2.0, and 8.0, respectively, evidencing the high chronic toxicity and low safety of these agents. IEM-1913 had a therapeutic index of 1600, which is evidence of low toxicity and high safety in the chronic use of IEM-1913. Thus, the selective blockade of AMPA receptors induced by IEM-1676 is sufficient to achieve a maximum anticonvulsant effect in rats with corasol kindling, though only combined blockade of NMDA and AMPA receptors provide both the maximal anticonvulsant activity and the safety of using IEM-1913 over a wide range of effective doses.


IEM-1913 IEM-1676 memantine valproate convulsions toxicity NMDA AMPA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. E. Gmiro and S. E. Serdyuk, “Combined blockade of AMPA and NMDA receptors in the brain eliminates clonic and clonic-tonic corasol convulsions without the development of ataxia in rats,” Byull. Eksperim. Biol. Med., 145, No. 6, 675–677 (2008).Google Scholar
  2. 2.
    V. E. Gmiro, S. E. Serdyuk, and O. S. Veselkina, “Comparison of the pharmacological activity and safety of the glutamate blockers IEM-1913 and memantine,” Byull. Eksperim. Biol. Med., 160, No. 7, 80–83 (2015).Google Scholar
  3. 3.
    N. Ya. Lukomskaya, V. V. Lavrent’eva, L. A. Starshinova, et al., “Effects of blockade of inotropic glutamate receptor channels on the development of pentylenetetrazole kindling in mice,” Ros. Fiziol. Zh., 91, No. 11, 1241–1251 (2005).Google Scholar
  4. 4.
    N. I. Rukoyatkina, L. V. Gorbunova, V. E. Gmiro, and N. Ya. Lukomskaya, “The ability of noncompetitive glutamate receptor blockers to weaken motor impairments in animals,” Ros. Fiziol. Zh., 87, No. 9, 1260–1267 (2001).Google Scholar
  5. 5.
    S. E. Serdyuk and V. E. Gmiro, “Stimulation of gastric mucosal afferents potentiates the anticonvulsant but not the sedative effects of diazepam in rats,” Ros. Fiziol. Zh., 98, No. 2, 236–241 (2012).Google Scholar
  6. 6.
    S. E. Serdyuk, V. E. Gmiro, and O. S. Veselkina, “Combined blockade of AMPA and NMDA receptors provides maximally effective suppression of the development of corasol kindling in rats,” Ros. Fiziol. Zh., 99, No. 5, 612–618 (2013).Google Scholar
  7. 7.
    I. M. Fedorova, V. E. Gmiro, L. G. Magazanik, and D. B. Tikhonov, “Glutamate receptor ion channels in neuromuscular junctions in larvae of the fly Calliphora vicina demonstrate high structural homology with AMPA channels in vertebrates,” Zh. Evolyuts. Biokhim. Fiziol., 44, No. 6, 556–562 (2008).Google Scholar
  8. 8.
    M. G. Corda, M. Orlandi, D. Lecca, et al., “Pentylenetetrazol-induced kindling in rats: effect of GABA function inhibitors,” Pharmacol. Biochem. Behav., 40, No. 2, 329–333 (1991).CrossRefGoogle Scholar
  9. 9.
    T. Doi, Y. Ueda, K. Nagatomo, and L. J. Willmore, “Role of glutamate and GABA transporters in development of pentylenetetrazol-kindling,” Neurochem. Res., 34, No. 7, 1324–1331 (2009).CrossRefGoogle Scholar
  10. 10.
    A. Ekonomou and F. Angelatou, “Upregulation of NMDA receptors in hippocampus and cortex in the pentylenetetrazol-induced ‘kindling’ model of epilepsy,” Neurochem. Res., 24, No. 12, 1515–1522 (1999).CrossRefGoogle Scholar
  11. 11.
    A. Ekonomou, A. L. Smith, and F. Angelatou, “Changes in AMPA receptor binding and subunit messenger RNA expression in hippocampus and cortex in the pentylenetetrazole-induced model of epilepsy,” Brain Res. Mol. Brain Res., 95, No. 1–2, 27–35 (2001).CrossRefGoogle Scholar
  12. 12.
    W. Fischer and H. Kittner, “Infl uence of ethanol on the pentylenetetrazol-induced kindling in rats,” J. Neural Transm., 105, No. 10–12, 1129–1142 (1998).CrossRefGoogle Scholar
  13. 13.
    V. E. Gmiro, S. E. Serdyuk, and O. S. Veselkina, “IEM-1913 – new effective and safe glutamate antagonist compared with memantine,” J. Pharmacogn. Phytochem., 4, No. 1, 77–79 (2016).Google Scholar
  14. 14.
    W. Loscher, “Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action,” Prog. Neurobiol., 58, No. 1, 31–59 (1999).CrossRefGoogle Scholar
  15. 15.
    W. Loscher and D. Honack, “Over-additive anticonvulsant effect of memantine and NBQX in kindled rats,” Eur. J. Pharmacol., 259, No. 2, R3–R5 (1994).CrossRefGoogle Scholar
  16. 16.
    J. Mehla, K. H. Reeta, P. Gupta, and Y. K. Gupta, “Protective effect of curcumin against seizures and cognitive impairment in a pentylenetetrazole-kindled epileptic rat model,” Life Sci., 87, No. 19–22, 596–603 (2010).CrossRefGoogle Scholar
  17. 17.
    K. Morimoto, M. Fahnestock, and R. Racine, “Kindling and status epilepticus models of epilepsy: rewiring the brain,” Prog. Neurobiol., 73, No. 1, 1–60 (2004).CrossRefGoogle Scholar
  18. 18.
    Y. Ohno, S. Ishihara, R. Terada, et al., “Antiepileptogenic and anticonvulsive actions of levetiracetam in a pentylenetetrazole kindling model,” Epilepsy Res., 89, No. 2–3, 360–364 (2010).CrossRefGoogle Scholar
  19. 19.
    C. G. Parsons, G. Quack, I. Bresink, et al., “Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo,” Neuropharmacology, 34, No. 10, 1239–1258 (1995).CrossRefGoogle Scholar
  20. 20.
    P. Tirassa, N. Costa, and L. Aloe, “CCK-8 prevents the development of kindling and regulates the GABA and NPY expression in the hippocampus of pentylenetetrazole (PTZ)-treated adult rats,” Neuropharmacology, 48, No. 5, 732–742 (2005).CrossRefGoogle Scholar
  21. 21.
    R. D. Whitlow, A. Sacher, D. D. Loo, et al., “The anticonvulsant valproate increases the turnover rate of gamma-aminobutyric acid transporters,” J. Biol. Chem., 278, No. 20, 17 716–17 726 (2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. E. Gmiro
    • 1
    Email author
  • S. E. Serdyuk
    • 1
  • O. S. Veselkina
    • 2
  1. 1.Research Institute of Experimental MedicineRussian Ministry of HealthSt. PetersburgRussia
  2. 2.VertexSt. PetersburgRussia

Personalised recommendations