Neuroscience and Behavioral Physiology

, Volume 49, Issue 3, pp 289–298 | Cite as

The Role of Humoral Factors in Producing the Cardioprotective Effect of Remote Ischemic Preconditioning

  • E. S. Prokudina
  • L. N. Maslov
  • A. S. Jaggi
  • D. S. Pismennyi
  • N. S. Voronkov
  • E. A. NesterovEmail author

The humoral pathway mediating the cardioprotective effect of remote ischemic preconditioning has been demonstrated in various models: ischemia-reperfusion of the fore- and hindlimbs and liver and occlusion-reperfusion of the mesenteric and renal arteries. This review assesses humoral components in the formation and realization of the cardioprotective actions of remote ischemic preconditioning of the heart. Endogenous agonists of opioid receptors, arachidonic acid derivatives (prostanoids), agonists of cannabinoid and vanilloid receptors, calcitonin gene-related peptide, leukotrienes, and microRNA are all regarded as humoral components. Adenosine, which also has a role in mediating the cardioprotective effects of remote ischemic preconditioning, is regarded as a mediator between the humoral factor and cardiomyocytes. Knowledge of the role of humoral factors in mediating cardioprotection may be useful for developing methods and therapeutic agents to increase the resistance of the myocardium to ischemic-reperfusion damage.


remote ischemic preconditioning humoral factors cardioprotection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. N. Maslov, J. P. Hedrik, R. Meshoulam, et al., “The role of transactivation of receptors in the cardioprotective effects of preconditioning and postconditioning,” Ros. Fiziol. Zh., 98, No. 3, 305–317 (2012).Google Scholar
  2. 2.
    S. G. Amara, V. Jonas, M. G. Rosenfeld, et al., “Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products,” Nature, 298, No. 5871, 240–244 (1982).Google Scholar
  3. 3.
    M. Arad, T. Oxman, R. Leor, and B. Rabinowitz, “Prostaglandins and the antiarrhythmic effect of preconditioning in the isolated rat heart,” Mol. Cell. Biochem., 160–161, 249–255 (1996).Google Scholar
  4. 4.
    C. Bang, S. Batkai, S. Dangwal, et al., “Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy,” J. Clin. Invest., 124, 2136–2146 (2014).Google Scholar
  5. 5.
    A. Barajas-Espinosa, F. Ochoa-Cortes, M. P. Moos, et al., “Characterization of the cysteinyl leukotriene 2 receptor in novel expression sites of the gastrointestinal tract,” Am. J. Pathol., 178, No. 6, 2682–2689 (2011).Google Scholar
  6. 6.
    T. Baranyai, Z. Giricz, Z. Varga, et al., “Extracellular vesicles mediate cardioprotection exerted by remote ischemic preconditioning in rats,” Cardiovasc. Res., 103, Suppl. 1, 435 (2014).Google Scholar
  7. 7.
    L. Barile, T. Moccetti, E. Marban, and G. Vassalli, “Roles of exosomes in cardioprotection,” Eur. Heart J., 38, No. 13 (2017), pii: ehw304.2017.Google Scholar
  8. 8.
    M. Bartekova, J. Styk, D. Pancza, et al., “Proteins released from liver after ischaemia induced an elevation of heart resistance against ischaemia-reperfusion injury: 1. beneficial effect of protein fraction isolated from perfusate after ischaemia and reperfusion of liver,” Gen. Physiol. Biophys., 22, 567–577 (2003).Google Scholar
  9. 9.
    M. Bartekova, Z. Sulova, D. Pancza, et al., “Proteins released from liver after ischaemia induced an elevation of heart resistance against ischaemia-reperfusion injury: 2. Beneficial effect of liver ischaemia,” Gen. Physiol. Biophys., 23, 489–497 (2004).Google Scholar
  10. 10.
    D. P. Bartel, “MicroRNAs: Target recognition and regulatory functions,” Cell, 136, 215–233 (2009).Google Scholar
  11. 11.
    T. Brandenburger, H. Grievink, N. Heinen, et al., “Effects of remote ischemic preconditioning and myocardial ischemia on microRNA-1 expression in the rat heart in vivo,” Shock, 42, No. 3, 234–238 (2014).Google Scholar
  12. 12.
    N. Bushati and S. M. Cohen, “MicroRNA functions,” Ann. Rev. Cell. Dev. Biol., 23, 175–205 (2007).Google Scholar
  13. 13.
    T. C. Chang and J. T. Mendell, “MicroRNAs in vertebrate physiology and human disease,” Annu. Rev. Genomics Hum. Genet., 8, 215–239 (2007).Google Scholar
  14. 14.
    W. Craelius, V. Chen, and N. el-Sherif, “Stretch activated ion channels in ventricular myocytes,” Biosci. Rep., 8, No. 5, 407–414 (1988).Google Scholar
  15. 15.
    A. J. D’Alonzo, G. J. Grover, R. B. Darbenzio, et al., “In vitro effects of capsaicin: antiarrhythmic and antiischemic activity,” Eur. J. Pharmacol., 272, No. 2–3, 269–278 (1995).Google Scholar
  16. 16.
    E. W. Dickson, D. J. Blehar, R. E. Carraway, et al., “Naloxone blocks transferred preconditioning in isolated rabbit hearts,” J. Mol. Cell Cardiol, 33, No. 9, 1751–1756 (2001).Google Scholar
  17. 17.
    E. W. Dickson, P. S. Ludwig, L. W. Ackermann, et al., “Met5- enkephalin-Arg6-Phe7 (MEAP): a cardioprotective hormonal opioid,” Acad. Emerg. Med., 13, No. 8, 813–819 (2006).Google Scholar
  18. 18.
    E. W. Dickson, W. A. Porcaro, R. A. Fenton, et al., “‘Preconditioning at a distance’ in the isolated rabbit heart,” Acad. Emerg. Heart, 7, No. 4, 311–317 (2000).Google Scholar
  19. 19.
    E. W. Dickson, C. P. Reinhardt, F. P. Renzi, et al., “Ischemic preconditioning may be transferable via whole blood transfusion: preliminary evidence,” J. Thromb. Thrombolysis, 8, No. 2, 123–129 (1999).Google Scholar
  20. 20.
    E. W. Dickson, R. J. Tubbs, W. A. Porcaro, et al., “Myocardial preconditioning factors evoke mesenteric ischemic tolerance via opioid receptors and K(ATP) channels,” Am. J. Physiol. Heart Circ. Physiol., 283, No. 1, H22–H28 (2002).Google Scholar
  21. 21.
    J. H. Dong, Y. X. Liu, E. S. Ji, and R. R. He, “Limb ischemic preconditioning reduces infarct size following myocardial ischemia-reperfusion in rats,” Sheng Li Xue Bao, 56, No. 1, 41–46 (2004).Google Scholar
  22. 22.
    X. Duan, B. Ji, X. Wang, et al., “Expression of micro-RNA-1 and microRNA-21 in different protocols of ischemic conditioning in an isolated rat heart model,” Cardiology, 122, 36–43 (2012).Google Scholar
  23. 23.
    A. Eulalio, E. Huntzinger, and E. Izaurralde, “Getting to the root of miRNA-mediated gene silencing,” Cell, 132, 9–14 (2008).Google Scholar
  24. 24.
    M. J. Fischer, P. W. Reeh, and S. K. Sauer, “Proton-induced calcitonin gene-related peptide release from rat sciatic nerve axons, in vitro, involving TRPV1,” Eur. J. Neurosci., 18, No. 4, 803–810 (2003).Google Scholar
  25. 25.
    A. Franco-Cereceda, “Calcitonin gene-related peptide and tachykinins in relation to local sensory control of cardiac contractility and coronary vascular tone,” Acta. Physiol. Scand. Suppl., 569, 1–63 (1988).Google Scholar
  26. 26.
    O. Friedrich, S. Wagner, A. R. Battle, et al., “Mechano-regulation of the beating heart at the cellular level - mechanosensitive channels in normal and diseased heart,” Prog. Biophys. Mol. Biol, 110, No. 2–3, 226–238 (2012).Google Scholar
  27. 27.
    B. C. Gho, R. G. Schoemaker, M. A. van den Doel, et al., “Myocardial protection by brief ischemia in noncardiac tissue,” Circulation, 94, No. 9, 2193–2200 (1996).Google Scholar
  28. 28.
    R. Gill, R. Kuriakose, Z. M. Gertz, et al., “Remote ischemic preconditioning for myocardial protection: update on mechanisms and clinical relevance,” Mol. Cell Biochem., 402, 41–49 (2015).Google Scholar
  29. 29.
    S. Gupta and A. A. Knowlton, “HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway,” Am. J. Physiol. Heart Circ. Physiol., 292, H3052–H3056 (2007).Google Scholar
  30. 30.
    A. R. Hajrasouliha, S. Tavakoli, M. Ghasemi, et al., “Endogenous cannabinoids contribute to remote ischemic preconditioning via cannabinoid CB2 receptors in the rat heart,” Eur. J. Pharmacol., 579, No. 1–3, 246–252 (2008).Google Scholar
  31. 31.
    M. Huber, A. Guhlmann, P. L. Jansen, and D. Keppler, “Hereditary defect of hepatobiliary cysteinyl leukotriene elimination in mutant rats with defective hepatic anion excretion,” Hepatology, 7, No. 2, 224–228 (1987).Google Scholar
  32. 32.
    G. Kallner, “Release and effects of calcitonin gene-related peptide in myocardial ischaemia,” Scand. Cardiovasc. J. Suppl., 49, 1–35 (1998).Google Scholar
  33. 33.
    D. Kim, “A mechanosensitive K+ channel in heart cells. Activation by arachidonic acid, “ J. Gen. Physiol., 100, No. 6, 1021–1040 (1992).Google Scholar
  34. 34.
    R. E. Klabunde, “Dipyridamole inhibition of adenosine metabolism in human blood,” Eur. J. Pharmacol., 93, No. 1–2, 21–26 (1983).Google Scholar
  35. 35.
    I. E. Konstantinov, J. Li, M. M. Cheung, et al., “Remote ischemic preconditioning of the recipient reduces myocardial ischemia-reperfusion injury of the denervated donor heart via a Katp channel-dependent mechanism,” Transplantation, 79, No. 12, 1691–1695 (2005).Google Scholar
  36. 36.
    K. R. Kozak, B. C. Crews, J. L. Ray, et al., “Metabolism of prostaglandin glycerol esters and prostaglandin ethanolamides in vitro and in vivo,” J. Biol. Chem., 276, No. 40, 36993–36998 (2001).Google Scholar
  37. 37.
    Y. Lee, C. Ahn, J. Han, et al., “The nuclear RNAse Drosha initiates microRNA processing,” Nature, 415, 415–419 (2003).Google Scholar
  38. 38.
    Y. Lee, M. Kim, J. Han, et al., “MicroRNA genes are transcribed by RNA polymerase II,” EMBO J., 23, 4051–4060 (2004).Google Scholar
  39. 39.
    S. Lehoux and A. Tedgui, “Cellular mechanism and gene expression in blood vessels,” J. Biomech., 36, No. 5, 631–643 (2003).Google Scholar
  40. 40.
    C. H. Leung, L. Wang, J. M. Nielsen, et al., “Remote cardioprotection by transfer of coronary effluent from ischemic preconditioned rabbit heart preserves mitochondrial integrity and function via adenosine receptor activation,” Cardiovasc. Drugs Ther., 28, No. 1, 7–17 (2014).Google Scholar
  41. 41.
    J. Li, S. Rohailla, N. Gelber, et al., “MicroRNA-144 is a circulating effector of remote ischemic preconditioning,” Basic Res. Cardiol., 109, No. 5, 423 (2014).Google Scholar
  42. 42.
    D. A. Liem, P. D. Verdouw, and D. J. Duncker, “Transient limb ischemia induces remote ischemic preconditioning in vivo,” Circulation, 107, No. 24, e218–e219 (2003).Google Scholar
  43. 43.
    D. A. Liem, P. D. Verdouw, H. Ploeg, et al., “Sites of action of adenosine in interorgan preconditioning of the heart,” Am. J. Physiol. Heart Circ. Physiol., 283, No. 1, H29–H37 (2002).Google Scholar
  44. 44.
    R. Lu, Y. J. Li, and H. W. Deng, “Evidence for calcitonin gene-related peptide-mediated ischemic preconditioning in the ray heart,” Regul. Pept., 82, No. 1–3, 53–57 (1999).Google Scholar
  45. 45.
    K. W. Mahaffey, J. A. Puma, N. A. Barbagelata, et al., “Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the Acute Myocardial Infarction STudy of ADenosine (AMISTAD) trial,” J. Am. Coll. Cardiol., 34, No. 6, 1711–1720 (1999).Google Scholar
  46. 46.
    B. Malinowska, G. Kwolek, and M. Gothert, “Anandamide and methanandamide induce both vanilloid VR1-and cannabinoid CB1 receptor-mediated changes in heart rate and blood pressure in anaesthetized rats,” Naunyn-Schmiedeberg’s Arch. Pharmacol., 364, No. 6, 562–569 (2001).Google Scholar
  47. 47.
    L. N. Maslov, I. Khaliulin, P. R. Oeltgen, et al., “Prospects of creation of cardioprotective and antiarrhythmic drugs based on opioid receptor agonists,” Med. Res. Rev., 36, No. 5, 871–923 (2016).Google Scholar
  48. 48.
    R. Muff, W. Born, T. A. Lutz, and J. A. Fischer, “Biological importance of the Peptides of the calcitonin family as revealed by disruption and transfer of corresponding genes,” Peptides, 25, No. 11, 2027–2038 (2004).Google Scholar
  49. 49.
    K. M. Mullane, G. J. Dusting, J. A. Salmon, et al., “Biotransformation and cardiovascular effects of arachidonic acid in the dog,” Eur. J. Pharmacol., 54, No. 3, 217–228 (1979).Google Scholar
  50. 50.
    N. C. Ni, L. L. Ballantyne, J. D. Mewburn, and C. D. Funk, “Multiplesite activation of the cysteinyl leukotriene receptor 2 is required for exacerbation of ischemia/reperfusion injury,” Arterioscler. Thromb. Vasc. Biol., 34, No. 2, 321–330 (2014).Google Scholar
  51. 51.
    B. Nilius, F. Viana, and G. Droogmans, “Ion channels in vascular endothelium,” Annu. Rev. Physiol., 59, 145–170 (1997).Google Scholar
  52. 52.
    K. Noguchi and M. Okubo, “Leukotrienes in nociceptive pathway and neuropathic/inflammatory pain,” Biol. Pharm. Bull., 34, No. 8, 1163–1169 (2011).Google Scholar
  53. 53.
    T. Oxman, M. Arad, R. Klein, et al., “Limb ischemia preconditions the heart against reperfusion tachyarrhythmia,” Am. J. Physiol., 273, No. 4, Pt. 2, H1707–H1712 (1997).Google Scholar
  54. 54.
    H. H. Patel, J. Moore, A. K. Hsu, and G. J. Gross, “Cardioprotection at a distance: mesenteric artery occlusion protects the myocardium via an opioid sensitive mechanism,” J. Mol. Cell Cardiol, 34, No. 10, 1317–1323 (2002).Google Scholar
  55. 55.
    T. J. Pell, G. F. Baxter, D. M. Yellon, and G. M. Drew, “Renal ischemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassium channels,” Am. J. Physiol., 275, No. 5, Pt. 2, H1542–H1547 (1998).Google Scholar
  56. 56.
    A. G. Portnichenko, M. I. Vasilenko, and A. A. Moibenko, “Hypoxic preconditioning prevents the induction and activation of 5-lipoxygenase during ischemia and reperfusion of rat heart,” Fiziol. Zh., 58, No. 4, 21–29 (2012).Google Scholar
  57. 57.
    P. K. Randhawa and A. S. Jaggi, “Gadolinium and ruthenium red attenuate remote hind limb preconditioning-induced cardioprotection: possible role of TRP and especially TRPV channels,” Naunyn-Schmiedeberg’s Arch. Pharmacol., 389, No. 8, 887–896 (2016).Google Scholar
  58. 58.
    F. N. Salloum, C. Yin, and R. C. Kukreja, “Role of microRNA in cardiac preconditioning,” J. Cardiovasc. Pharmacol., 56, No. 6, 581–588 (2010).Google Scholar
  59. 59.
    G. Schulte, H. Sommerschild, J. Yang, et al., “Adenosine A1 receptors are necessary for protection of the murine heart by remote, de- layed adaptation to ischaemia,” Acta Physiol. Scand., 182, No. 2, 133–143 (2004).Google Scholar
  60. 60.
    F. C. Serejo, L. F. Rodrigues, Jr., K. C. da Silva Tavares, et al., “Cardioprotective properties of humoral factors released from rat hearts subject to ischemic preconditioning,” J. Cardiovasc. Pharmacol., 49, No. 4, 214–220 (2007).Google Scholar
  61. 61.
    R. Sharma, P. K. Randhawa, N. Singh, and A. S. Jaggi, “Possible role of thromboxane A2 in remote hind limb preconditioning-induced cardioprotection,” Naunyn-Schmiedeberg’s Arch. Pharmacol., 389, No. 1, 1–9 (2016).Google Scholar
  62. 62.
    F. C. Shenton and S. Pyner, “Expression of transient receptor potential channels TRPC1 and TRPV4 in venoatrial endocardium of the rat heart,” Neuroscience, 267, 195–204 (2014).Google Scholar
  63. 63.
    M. Shimizu, M. Tropak, R. J. Diaz, et al., “Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: evidence suggesting cross-species protection,” Clin. Sci. (Lond.), 117, No. 5, 191–200 (2009).Google Scholar
  64. 64.
    B. Singh, P. K. Randhawa, N. Singh, and A. S. Jaggi, “Investigations on the role of leukotrienes in remote hind limb preconditioning-induced cardioprotection in rats,” Life Sci., 152, 238–243 (2016).Google Scholar
  65. 65.
    A. Singh, P. K. Randhawa, A. Bali, et al., “Exploring the role of TRPV and CGRP in adenosine preconditioning and remote hind limb preconditioning-induced cardioprotection in rats,” Cardiovasc. Drugs Ther., 31, No. 3, 671–673 (2017).Google Scholar
  66. 66.
    H. Surendra, R. J. Diaz, K. Harvey, et al., “Interaction of 5 and κ opioid receptors with adenosine A1 receptors mediates cardioprotection by remote ischemic preconditioning,” J. Mol. Cell Cardiol, 60, 142–150 (2013).Google Scholar
  67. 67.
    A. Takaoka, I. Nakae, K. Mitsunami, et al., “Renal ischemia/reperfusion remotely improves myocardial energy metabolism during myocardial ischemia via adenosine receptors in rabbits: effects of ‘remote preconditioning),’” J. Am. Coll. Cardiol., 33, No. 2, 556–564 (1999).Google Scholar
  68. 68.
    B. W. van Balkom, O. G. de Jong, M. Smits, et al., “Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells,” Blood, 121, No. 19, 3997–4006 (2013).Google Scholar
  69. 69.
    L. Wang, N. Oka, M. Tropak, et al., “Remote ischemic preconditioning elaborates a transferable blood-borne effector that protects mitochondrial structure and function and preserves myocardial performance after neonatal cardioplegic arrest,” J. Thorac. Cardiovasc. Surg, 136, No. 2, 335–342 (2008).Google Scholar
  70. 70.
    C. Weinbrenner, M. Nelles, N. Herzog, et al., “Remote preconditioning by infrarenal occlusion of the aorta protects the heart from infarction: a newly identified non-neuronal but PKC-dependent pathway,” Cardiovasc. Res., 55, No. 3, 590–601 (2002).Google Scholar
  71. 71.
    C. Weinbrenner, F. Schulze, L. Sarvary, and R. H. Strasser, “Remote preconditioning by infrarenal aortic occlusion is operative via 51-opioid receptors and free radicals in vivo in the rat heart,” Cardiovasc. Res., 61, No. 3, 591–599 (2004).Google Scholar
  72. 72.
    S. Wolfrum, J. Nienstedt, M. Heidbreder, et al., “Calcitonin gene related peptide mediates cardioprotection by remote preconditioning,” Regul. Pept., 127, No. 1–3, 217–224 (2005).Google Scholar
  73. 73.
    R. Q. Xie, W. Cui, Y. M. Hao, et al., “Effects of remote preconditioning induced by skeletal muscle ischemia on myocardial cells apoptosis and roles of opioid receptors in pigs,” Zhongguo Ying Yong Sheng Li Xue Za Zhi, 22, No. 4, 474–478 (2006).Google Scholar
  74. 74.
    M. R. Zahner, D. P. Li, S. R. Chen, and H. L. Pan, “Cardiac vanilloid receptor 1-expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats,” J. Physiol., 551, Pt. 2, 515–523 (2003).Google Scholar
  75. 75.
    M. Zaidi, L. H. Breimer, and I. Maclntyre, “Biology of peptides from the calcitonin genes,” Q. J. Exp. Physiol., 72, No. 4, 371–408 (1987).Google Scholar
  76. 76.
    S. Z. Zhang, N. F. Wang, J. Xu, et al., “Kappa-opioid receptors mediate cardioprotection by remote preconditioning,” Anesthesiology, 105, No. 3, 550–556 (2006).Google Scholar
  77. 77.
    J. Zheng, “Molecular mechanism of TRP channels,” Compr. Physiol., 3, No. 1, 221–242 (2013).Google Scholar
  78. 78.
    Y. Zheng, J. M. Vicencio, D. M. Yellon, and S. M. Davidson, “Exosomes released from endothelial cells are cardioprotective,” Heart, 100, Suppl. 1, A10 (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. S. Prokudina
    • 1
  • L. N. Maslov
    • 1
  • A. S. Jaggi
    • 2
  • D. S. Pismennyi
    • 1
  • N. S. Voronkov
    • 1
  • E. A. Nesterov
    • 3
    Email author
  1. 1.Research Institute of Cardiology, Tomsk National Research Medical CenterRussian Academy of SciencesTomskRussia
  2. 2.Punjabi UniversityPatialaIndia
  3. 3.Tomsk National Research Polytechnic UniversityTomskRussia

Personalised recommendations