More Light on the Brain: 30 Years Later

  • A. Yu. MalyshevEmail author
  • P. M. Balaban

Recent decades have been characteristics by the rapid development of optical methods in neurobiology. Historically, the first optical methods of recording neuron activity were those using potential-dependent dyes with recording of the overall activity of small areas of the brain exploiting intrinsic optical signals. With the development of genetic technologies, optogenetics appeared, allowing not only neuron activity to be recorded optically but also cell operation to be controlled using photostimulation. The wide use of optogenetics in neurobiological research has filled a significant gap in approaches to studies of brain function in the last decade. Active attempts are now being made to use optogenetic approaches in the treatment of epilepsy and a series of neurodegenerative diseases in clinical practice.


neurobiophotonics optogenetics photopharmacology optical recording 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aravanis, A. M., Wang, L. P., Zhang, F., et al., “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng., 4, S143–S156 (2007).CrossRefGoogle Scholar
  2. Banghart, M. R., Mourot, A., Fortin, D. L., et al., “Photochromic blockers of voltage-gated potassium channels,” Angewandte Chemie Int. Ed., 48, 9097–9101 (2009).CrossRefGoogle Scholar
  3. Berndt, A., Lee, S. Y., Ramakrishnan, C., and Deisseroth, K., “Structureguided transformation of channelrhodopsin into a light-activated chloride channel,” Science, 344, 420–424 (2014).CrossRefGoogle Scholar
  4. Boyden, E. S., Zhang, F., Bamberg, E., et al., “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci., 8, 1263–1268 (2005).CrossRefGoogle Scholar
  5. Brezhestovskii, P. and Maleeva, G., “Photopharmacology: a brief review using the control of potassium channels as an example,” Zh. Vyssh. Nerv. Deyat., 67, No. 5 (2017).Google Scholar
  6. Cohen, L. B., “More light on brains,” Nature, 331, 112–113 (1988).CrossRefGoogle Scholar
  7. Colonnese, M. T., Phillips, M. A., Constantine-Paton, M., et al., “Development of hemodynamic responses and functional connectivity in rat somatosensory cortex,” Nat. Neurosci., 11, 72–79 (2008).CrossRefGoogle Scholar
  8. Covington, H. E., 3rd, Lobo, M. K., Maze, I., et al., “Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex,” J. Neurosci., 30, 16,082–16,090 (2010).Google Scholar
  9. Dolgikh, D. A., Malyshev, A. Yu., Roshchin, M. V., et al., “Comparative characteristics of two anionic channelrhodopsins and the perspectives for their use in optogenetics,” Dokl. Akad. Nauk, 471, No. 6, 1–4 (2016).Google Scholar
  10. Dygalo, N. N. and Shishkina, G. T., “Optogenetic studies of the mechanisms of the pathophysiology and treatment of depression,” Zh. Vyssh. Nerv. Deyat., 67, No. 5 (2017).Google Scholar
  11. Erofeev, A. I., Zakharova, O. A., Terekhin, S. G., et al., “Optogenetic studies of the electrophysiological characteristics of hippocampal neurons in transgenic mice of the strain ps1-m146v (a model of Alzheimer’s disease),” Zh. Vyssh. Nerv. Deyat., 67, No. 5 (2017).Google Scholar
  12. Firsov, M. L., “Perspectives for the optogenetic prosthetization of the retina,” Zh. Vyssh. Nerv. Deyat., 67, No. 5 (2017).Google Scholar
  13. Govorunova, E. G., Sineshchekov, O. A., and Spudich, J. L., “Three families of channelrhodopsins and their use in optogenetics,” Zh. Vyssh. Nerv. Deyat., 67, No. 5 (2017).Google Scholar
  14. Govorunova, E. G., Sineshchekov, O. A., Liu, X., et al., “Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics,” Science, 349, 647–650 (2015).CrossRefGoogle Scholar
  15. Grinvald, A., Omer, D., Naaman, S., and Sharon, D., “Imaging the dynamics of mammalian neocortical population activity in vivo,” in: Membrane Potential Imaging in the Nervous System and Heart, Canepari, M. et al. (eds.), Springer, Basel (2015); pp. 243–271.Google Scholar
  16. Kim, S. A. and Jun, S. B., “In-vivo optical measurement of neural activity in the brain,” Exp. Neurobiol., 22, 158–166 (2013).CrossRefGoogle Scholar
  17. Krook-Magnuson, E., Armstrong, C., Oijala, M., and Soltesz, I., “Ondemand optogenetic control of spontaneous seizures in temporal lobe epilepsy,” Nat. Commun., 4, 1376 (2013).CrossRefGoogle Scholar
  18. Kuleshova, E. P., “Optogenetics - new possibilities for electrophysiology,” Zh. Vyssh. Nerv. Deyat., 67, No. 5 (2017).Google Scholar
  19. Lin, J. Y., Lin, M. Z., Steinbach, P., and Tsien, R. Y., “Characterization of engineered channelrhodopsin variants with improved properties and kinetics,” Biophys. J., 96, 1803–1814 (2009).CrossRefGoogle Scholar
  20. Litvin, F. F., Sineshchekov, O. A., and Sineshchekov, V. A., “Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis,” Nature, 271, 476–478 (1978).CrossRefGoogle Scholar
  21. Matveev, M. V., Erofeev, A. I., Pyatyshev, E. N., et al., “An optoelectronic neurostimulation system with adaptive feedback,” Zh. Vyssh. Nerv. Deyat., 67, No. 5 (2017).Google Scholar
  22. Miesenböck, G., “The optogenetic catechism,” Science, 326, 395–399 (2009).CrossRefGoogle Scholar
  23. Nikitin, E. S., Roshchin, M. V., Ierusalimskii, V. N., et al., “Optogenetic stimulation of the axons of main pyramidal neurons in the visual cortex and hippocampus in living brain slices,” Zh. Vyssh. Nerv. Deyat., 67, No. 5 (2017).Google Scholar
  24. Paz, J. T., Davidson, T. J., Frechette, E. S., et al., “Closed-loop optogenetic control of thalamus as a new tool to interrupt seizures after cortical injury,” Nat. Neurosci., 16, 64–70 (2013).CrossRefGoogle Scholar
  25. Popovic, M., Vogt, K., Holthoff, K., et al., “Imaging submillisecond membrane potential changes from individual regions of single axons, dendrites and spines,” in: Membrane Potential Imaging in the Nervous System and Heart, Canepari, M. et al.(eds.), Springer, Basel (2015), pp. 57–101.CrossRefGoogle Scholar
  26. Simonova, N. A., Bal’, N. V., Balaban, P. M., et al., “An optogenetic approach to studies of the mechanisms of heterosynaptic plasticity in neocortical neurons,” Zh. Vyssh. Nerv. Deyat., 67, No. 5 (2017).Google Scholar
  27. Sintsov, M. Yu., Sharipzyanova, L. S., Suchkov, D. S., et al., “Local changes in water balance as a marker for neuron activity in the somatosensory system in neonatal rat pups,” Zh. Vyssh. Nerv. Deyat., 67, No. 5 (2017).Google Scholar
  28. Tervo, D. G., Hwang, B. Y., Viswanathan, S., et al., “A designer AAV variant permits efficient retrograde access to projection neurons,” Neuron, 92, No. 2, 372–382 (2016).CrossRefGoogle Scholar
  29. Tønnesen, J., Sørensen, A. T., Deisseroth, K., et al., “Optogenetic control of epileptiform activity,” Proc. Natl. Acad. Sci. USA, 106, 12162–12167 (2009).CrossRefGoogle Scholar
  30. Wietek, J., Wiegert, J. S., Adeishvili, N., et al., “Conversion of channelrhodopsin into a light-gated chloride channel,” Science, 344, 409–412 (2014).CrossRefGoogle Scholar
  31. Yekhlef, L., Breschi, G. L., and Taverna, S., “Optogenetic activation of VGLUT2-expressing excitatory neurons blocks epileptic seizure-like activity in the mouse entorhinal cortex,” Sci. Rep., 7, 43230 (2017).CrossRefGoogle Scholar
  32. Zemelman, B. V., Lee, G. A., Ng, M., and Miesenböck, G., “Selective photostimulation of genetically chARGed neurons,” Neuron, 33, 15–22 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations