Advertisement

An Optoelectronic Neurostimulation System with Adaptive Feedback

  • M. V. Matveev
  • A. I. Erofeev
  • E. N. PyatishevEmail author
  • U. D. Akulshin
  • I. B. Bezprozvanny
  • O. L. Vlasova
Article
  • 8 Downloads

This article presents a basic scheme for a multichannel combined optoelectrode microimplant using feedback developed by the authors. An algorithm for stimulation and recording of neuron responses able to adjust the command signals to the light source and an optional system for administration of pharmacological compounds are described. The device can be used for autonomous adaptive optogenetic stimulation in chronic experiments on freely mobile animals, and has potential for use in treating patients. This report provides a detailed description of the preparation of a combined optoelectrode microimplant (optrode). The main advantage of this development is the ability to combine the stimulating and recording parts of the optogenetic system with adaptive control of light source parameters without the system being permanently connected to a personal computer. The system will later be tested on slices and in freely mobile animals in studies of the electrophysiological characteristics of hippocampal neurons in transgenic mice with different models of neurodegenerative diseases.

Keywords

optogenetics neurostimulation multichannel implant feedback optrode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anikeeva, P., Andalman, A. S., Witten, I., et al., “Optetrode: a multichannel readout for optogenetic control in freely moving mice,” Nat. Neurosci., 15, No. 1, 163–170 (2011).CrossRefGoogle Scholar
  2. Boyden, E. S., Zhang, F., Bamberg, E., et al., “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci., 8, No. 9, 1263–1268 (2015), DOI 10.1038/nn1525 (2005).Google Scholar
  3. Buzsaki, G., Stark, E., Berenyi, A., et al., “Tools for probing local circuits: high-density silicon probes combined with optogenetics,” Neuron, 86, No. 1, 92–105 (2015), DOI 10.1016/j.neuron.2015.01.028 (2015).Google Scholar
  4. Deisseroth, K. and Schnitzer, M. J., “Engineering approaches to illuminating brain structure and dynamics,” Neuron, 30, No. 1, 568–577 (2013).CrossRefGoogle Scholar
  5. Erofeev, A. I., Zakharova, O. A., Matveev, M. V., et al., “Use of optogenetic technology in cell culture models,” J. Phys. Conf. Series, 741, No. 1 (2016).Google Scholar
  6. Kuleshova, E. P., “Optogenetics – new potentials for electrophysiology,” Zh. Vyssh. Nerv. Deyat., 67, No. 5 (2017).Google Scholar
  7. Laxton, A. W., Tang-Wai, D. F., McAndrews, M. P., et al., “A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease,” Ann. Neurol., 68, No. 4, 521–534 (2010).CrossRefGoogle Scholar
  8. Matveev, M. V., Erofeev, A. I., Terekhin, S. G., et al., “An implanted device for optogenetic studies and stimulation of excitable tissues,” Nauch.- Tekhn. Ved. SPbGPU. Fiz.-Mat. Nauki, 225, No. 3, 75–85 (2015).Google Scholar
  9. Nizametdinova, D. M., Tyurnikov, V. M., Fedorenko, I. I., et al., “Microelectrode recording of neuron activity in surgery for Parkinson’s disease,” Annal. Klin. Eksperim. Nevrol., 10, No. 2, 42–45 (2016).Google Scholar
  10. Sparta, D. R., Stamatakis, A. M., Phillips, J. L., et al., “Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits,” Nat. Protoc., 7, No. 1, 12–23 (2012).CrossRefGoogle Scholar
  11. Wang, J., Wagner, F., Borton, A. D., et al., “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” Neural Eng., 9, No. 1, 1–14 (2012).CrossRefGoogle Scholar
  12. Zhang, H., Jie Liu, J., Sun, S., et al., “Calcium signaling, excitability, and synaptic plasticity defects in mouse model,” J. Alzheimers Dis., 45, No. 2, 561–580 (2015).CrossRefGoogle Scholar
  13. Zhang, J., Laiwalla, F., Kim, J. A., et al., “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” Neural Eng., 5, No. 1, 1–13 (2009).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. V. Matveev
    • 1
  • A. I. Erofeev
    • 1
  • E. N. Pyatishev
    • 2
    Email author
  • U. D. Akulshin
    • 2
  • I. B. Bezprozvanny
    • 1
    • 3
  • O. L. Vlasova
    • 1
  1. 1.Molecular Neurodegenerative Laboratory, St. PetersburgPeter the Great Polytechnic UniversitySt. PetersburgRussia
  2. 2.Laboratory for Nano- and Microsystems TechnologiesSt. Petersburg Peter the Great Polytechnic UniversitySt. PetersburgRussia
  3. 3.Department of Physiology, South-Western Medical CenterTexas UniversityDallasUSA

Personalised recommendations