An Optogenetic Study of the Electrophysiological Properties of Hippocampal Neurons in PS1-M146V Transgenic Mice (a model of Alzheimer’s disease)

  • A. I. Erofeev
  • O. A. Zakharova
  • S. G. Terekhin
  • P. V. Plotnikova
  • I. B. BezprozvannyEmail author
  • O. L. Vlasova

We report here a comparative (using chemical, electrical, and optical stimulation) study of the electrophysiological properties of cultured hippocampal neurons from transgenic animals expressing a mutant presenilin 1 protein. All three types of stimulation were found to elicit the following differences from the wild type: with overall more active electrophysiological behavior (especially at the beginning of stimulation), mutant cells differed from wild-type neurons by not maintaining consistent activity over time. However, only optogenetic stimulation increased the absolute number of action potentials and decreased their amplitude as compared with the corresponding values in wild-type neurons. The molecular-cellular mechanisms of this effect are suitable for further studies, both basic and applied (to identify regimes for controlling the electrical activity of neurons).


optogenetics hippocampal neurons Alzheimer’s disease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, E. D., The Physical Background of Perception, Clarendon Press, Oxford, England (1946).Google Scholar
  2. Arnold, F. J., Hofmann, F., Bengtson, C. P., et al., “Microelectrode array recordings of cultured hippocampal networks reveal a simple model for transcription and protein synthesis-dependent plasticity,” J. Physiol., 564, No. 1, 3–19 (2005).Google Scholar
  3. Auffret, A., Gautheron, V., Mattson, M. P., et al., “Progressive age-related impairment of the late long-term potentiation in Alzheimer’s disease presenilin-1 mutant knock-in mice,” J. Alzheimers Dis., 19, No. 3, 1021–1033 (2010).Google Scholar
  4. Berridge, M. J., “Neuronal calcium signaling,” Neuron, 21, No. 1, 13–26 (1998).Google Scholar
  5. Bezprozvanny, I. and Mattson, M. P., “Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease,” Trends Neurosci., 31, No. 9, 454–463 (2008).Google Scholar
  6. Bilan, D. S., Matlashov, M. E., Gorokhovatsky, A. Y., et al., “Genetically encoded fluorescent indicator for imaging NAD(+)/NADH ratio changes in different cellular compartments,” Biochem. Biophys. Acta, 1840, No. 3, 951–957 (2014).Google Scholar
  7. Boyden, E. S., Zhang, F., Bamberg, E., et al., “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci., 8, No. 9, 1263–1268 (2005).Google Scholar
  8. Chakroborty, S., Goussakov, I., Miller, M. B., and Stutzmann, G. E., “Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice,” J. Neurosci., 29, No. 30, 9458–9470 (2009).Google Scholar
  9. Chakroborty, S., Kim, J., Schneider, C., et al., “Early presynaptic and postsynaptic calcium signaling abnormalities mask underlying synaptic depression in presymptomatic Alzheimer’s disease mice,” J. Neurosci., 32, No. 24, 8341–8353 (2012).Google Scholar
  10. Chen, X., Wu, J., Lvovskaya, S., et al., “Dantrolene is neuroprotective in Huntington’s disease transgenic mouse model,” Mol. Neurodegener., 6, No. 81, 1–12 (2011).Google Scholar
  11. Erofeev, A. I., Matveev, M. V., Terekhin, S. G., et al., “Optogenetics – a new method for studying neuron activity,” Nauch.-Tekhnich. Ved. SPbGPU Fiz.-Mat. Nauki, 225, No. 3, 61–74 (2015).Google Scholar
  12. Erofeev, A. I., Zakharova, O. A., Matveev, M. V., et al., “Use of optogenetic technology in cell culture models,” J. Physics: Conf. Ser., 741, No. 1, 1–4 (2016).Google Scholar
  13. Glock, C., Nagpal, J., and Gottschalk, A., “Microbial rhodopsin optogenetic tools: Application for analyses of synaptic transmission and of neuronal network activity in behavior,” Meth. Mol. Biol., 1327, 87–103 (2015).Google Scholar
  14. Hardy, J. and Selkoe, D. J., “The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics,” Science, 297, No. 5580, 353–356 (2002).Google Scholar
  15. Jiang, M. and Chen, G., “High Ca2+-phosphate transfection efficiency in low-density neuronal cultures,” Nature Protocols, 1, No. 2, 695–700 (2006).Google Scholar
  16. Kim, C. K., Adhikari, A., and Deisseroth, K., “Integration of optogenetics with complementary methodologies in systems neuroscience,” Nat. Rev. Neurosci., 18, No. 4, 222–235 (2017).Google Scholar
  17. Lanshakov, D. A., Drozd, U. S., Zapara, T. A., and Dygalo, N. N., “Introduction of optogenetic vectors into the brain of neonatal animals for studies of neuron function in the late period of ontogeny,” Vavilov. Zh. Genet. Selekts., 20, No. 2, 255–261 (2016).Google Scholar
  18. Laxton, A. W., Tang-Wai, D. F., McAndrews, M. P., Zumsteg, D., et al., “A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease,” Ann. Neurol., 68, No. 4, 521–534 (2010).Google Scholar
  19. Lin, J. Y., Lin, M. Z., Steinbach, P., and Tsien, R. Y., “Characterization of engineered channelrhodopsin variants with improved properties and kinetics,” Biophys. J., 96, No. 5, 1803–1814 (2009).Google Scholar
  20. Matlashov, M. E., Molecular Tools for Modulating Redox Status and Monitoring Neuron Activity: Author’s Abstract of Master’s Thesis in Biological Sciences, Moscow (2014).Google Scholar
  21. Matveev, M. V., Erofeev, A. I., Terekhin, S. G., et al., “Implanted devices for optogenetic studies and stimulation of excitable tissues,” Nauch.- Tekhn. Ved. SPbGPU. Fiz.-Mat. Nauki, 225, No. 3, 75–85 (2015).Google Scholar
  22. Nicholls, J., Martin, A., Wallace, B., and Fuchs, P., From Neuron to Brain [Russian translation], Editorial URSS (2003).Google Scholar
  23. Nikitin, E. S., Malyshev, A. Yu., Balaban, P. M., and Volgushev, M. A., “Physiotherapy aspects of the use of the Hodgkin-Huxley model of action potential generation for neurons in invertebrates and vertebrates,” Zh. Vyssh. Nerv. Deyat., 66, No. 3, 279–288 (2016).Google Scholar
  24. Park, S., Guo, Y., Jia, X., et al., “One-step optogenetics with multifunctional flexible polymer fibers,” Nat. Neurosci., 20, No. 4, 612–619 (2017).Google Scholar
  25. Popugaeva, E. A., Vlasova, O. L., and Bezprozvanny, I. B., “The role of intracellular calcium in the development of the pathogenesis of Alzheimer’s disease,” Nauch.-Tekhn. Ved. SPbGPU Fiz.-Mat. Nauki, 189, No. 1, 91–99 (2014).Google Scholar
  26. Stutzmann, G. E., “The pathogenesis of Alzheimers disease is it a lifelong ‘calciumopathy’?” Neuroscientist, 13, No. 5, 546–559 (2007).Google Scholar
  27. Sun, X., Beglopoulos, V., Mattson, M. P., and Shen, J., “Hippocampal spatial memory impairments caused by the familial Alzheimer’s disease-linked presenilin 1 M146V mutation,” Neurodegener. Dis., 2, No. 1, 6–15 (2005).Google Scholar
  28. Wang, R., Dineley, K. T., Sweatt, J. D., and Zheng, H., “Presenilin 1 familial Alzheimer’s disease mutation leads to defective associative learning and impaired adult neurogenesis,” Neuroscience, 126, No. 2, 305–312 (2004).Google Scholar
  29. Zhang, H., Jie Liu, J., Sun, S., et al., “Calcium signaling, excitability, and synaptic plasticity defects in mouse model,” J. Alzheimers Dis., 45, No. 2, 561–580 (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. I. Erofeev
    • 1
  • O. A. Zakharova
    • 1
  • S. G. Terekhin
    • 1
  • P. V. Plotnikova
    • 1
  • I. B. Bezprozvanny
    • 1
    • 2
    Email author
  • O. L. Vlasova
    • 1
  1. 1.Laboratory for Molecular Neurodegeneration, St. PetersburgPeter the Great Polytechnic UniversitySt. PetersburgRussia
  2. 2.Department of Physiology, South-Western Medical CenterTexas UniversityDallasUSA

Personalised recommendations