Advertisement

Optogenetic Studies of the Pathophysiological Mechanisms and Treatment of Depression

  • N. N. DygaloEmail author
  • G. T. Shishkina
Article
  • 6 Downloads

Glutamatergic neurotransmission and the active brain neurotransmitter systems support the operation of mechanisms controlling psychoemotional status. Convincing evidence has now been reported on the involvement of brain areas key for regulating emotions, including the prefrontal cortex, hippocampus, nucleus accumbens, ventral tegmental area, serotoninergic raphe nuclei, and amygdala, as well as in the pathogenesis of depression and the therapeutic effects of antidepressants. Impairments to the balance between “excitatory” and “inhibitory” signals to these areas, judging from experimental and clinical data, appear to underlie depressive psychoemotional disorders. Efforts in identifying the mechanisms of depression and antidepressant responses have received significant support because of the development of optogenetic methods and their introduction into research practice. Studies in recent years using optogenetic approaches and the forthcoming translation of their main results into clinical practice are discussed in this review.

Keywords

optogenetics stress depression parts of the brain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anstrom, K. K., Miczek, K. A., and Budygin, E. A., “Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats,” Neuroscience, 161, 3–12 (2009).CrossRefGoogle Scholar
  2. Arrigoni, E. and Saper, C. B., “What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake-sleep regulation,” Curr. Opin. Neurobiol., 29, 165–171 (2014).CrossRefGoogle Scholar
  3. Bagot, R. C., Parise, E. M., Peсa, C. J., et al., “Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression,” Nat. Commun., 6, 7062 (2015).CrossRefGoogle Scholar
  4. Belzung, C., Turiault, M., and Griebel, G., “Optogenetics to study the circuits of fear-and depression-like behaviors: a critical analysis,” Pharmacol. Biochem. Behav., 122, 144–157 (2014).CrossRefGoogle Scholar
  5. Bernstein, J. G. and Boyden, E. S., “Optogenetic tools for analyzing the neural circuits of behavior,” Trends Cogn. Sci., 15, 592–600 (2011).CrossRefGoogle Scholar
  6. Berton, O., McClung, C. A., Dileone, R. J., et al., “Emerging antidepressants to treat major depressive disorder,” Asian. J. Psychiatr., 12, 7–16 (2014).CrossRefGoogle Scholar
  7. Cao, J. L., Covington, H. E., 3rd, Friedman, A. K., et al., “Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action,” J. Neurosci., 30, 16453–16458 (2010).CrossRefGoogle Scholar
  8. Carreno, F. R., Donegan, J. J., Boley, A. M., et al., “Activation of a ventral hippocampus-medial prefrontal cortex pathway is both necessary and sufficient for an antidepressant response to ketamine,” Mol. Psychiatry, 21, 1298–1308 (2016).CrossRefGoogle Scholar
  9. Chaudhury, D., Walsh, J. J., Friedman, A. K., et al., “Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons,” Nature, 493, 532–536 (2013).CrossRefGoogle Scholar
  10. Covington, H. E., 3rd, Lobo, M. K., Maze, I., et al., “Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex,” J. Neurosci., 30, 16082–16090 (2010).CrossRefGoogle Scholar
  11. Deisseroth, K., “Circuit dynamics of adaptive and maladaptive behaviour,” Nature, 505, 309–317 (2014).CrossRefGoogle Scholar
  12. Duman, R. S. and Monteggia, L. M., “A neurotrophic model for stress-related mood disorders,” Biol. Psychiatry, 59, 1116–1127 (2006).CrossRefGoogle Scholar
  13. Dygalo, N., Lanshakov, D. A., Drozd, U. S., et al., “Optogenetic activation of the CA1 hippocampal pyramidal neurons induces a depressive-like behavioural phenotype,” Eur. Neuropsychopharmacol., 26, S277–S278 (2016).CrossRefGoogle Scholar
  14. Fuchikami, M., Thomas, A., Liu, R., et al., “Optogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions,” Proc. Natl. Acad. Sci. USA, 112, 8106–8111 (2015).CrossRefGoogle Scholar
  15. Geddes, S. D., Assadzada, S., Lemelin, D., et al., “Target-specific modulation of the descending prefrontal cortex inputs to the dorsal raphe nucleus by cannabinoids,” Proc. Natl. Acad. Sci. USA, 113, 5429–5434 (2016).CrossRefGoogle Scholar
  16. Grace, A. A., “Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression,” Nat. Rev. Neurosci., 17, 524–532 (2016).CrossRefGoogle Scholar
  17. Graeff, F. G., Guimarães, F. S., De Andrade, T. G., and Deakin, J. F., “Role of 5-HT in stress, anxiety, and depression,” Pharmacol. Biochem. Behav., 54, 129–141 (1996).CrossRefGoogle Scholar
  18. Hamani, C., Diwan, M., Macedo, C. E., et al., “Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in rats,” Biol. Psychiatry, 67, 117–124 (2010).CrossRefGoogle Scholar
  19. Hooper, A. and Maguire, J., “Characterization of a novel subtype of hippocampal interneurons that express corticotropin-releasing hormone,” Hippocampus, 26, 41–53 (2016).CrossRefGoogle Scholar
  20. Kabanova, A., Pabst, M., Lorkowski, M., et al., “Function and developmental origin of a mesocortical inhibitory circuit,” Nat. Neurosci., 18, 872–882 (2015).CrossRefGoogle Scholar
  21. Kim, C. K., Adhikari, A., and Deisseroth, K., “Integration of optogenetics with complementary methodologies in systems neuroscience,” Nat. Rev. Neurosci., 18, 222–235 (2017).CrossRefGoogle Scholar
  22. Koo, J. W., Labontŭ, B., Engmann, O., et al., “Essential role Of mesolimbic brain-derived neurotrophic factor in chronic social stress-induced depressive behaviors,” Biol. Psychiatry, 80, 469–478 (2016).CrossRefGoogle Scholar
  23. Krishnan, V., Han, M. H., Graham, D. L., et al., “Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions,” Cell, 131, 391–404 (2007).CrossRefGoogle Scholar
  24. Kumar, S., Black, S. J., Hultman, R., et al., “Cortical control of affective networks,” J. Neurosci., 33, 1116–1129 (2013).CrossRefGoogle Scholar
  25. Lanshakov, D. A., Drozd, U. S., and Dygalo, N. N., “Optogenetic stimulation increases level of antiapoptotic protein Bcl-xL in neurons,” Biochemistry (Mosc.), 82, 340–344 (2017).CrossRefGoogle Scholar
  26. Lanshakov, D. A., Sukhareva, E. V., Kalinina, T. S., and Dygalo, N. N., “Dexamethasone-induced acute excitotoxic cell death in the developing brain,” Neurobiol. Dis., 91, 1–9 (2016).CrossRefGoogle Scholar
  27. Liu, X., Ramirez, S., Pang, P. T., et al., “Optogenetic stimulation of a hippocampal engram activates fear memory recall,” Nature, 484, 381–385 (2012).CrossRefGoogle Scholar
  28. Luo, M., Zhou, J., and Liu, Z., “Reward processing by the dorsal raphe nucleus: 5-HT and beyond,” Learn. Mem., 22, 452–460 (2015).CrossRefGoogle Scholar
  29. Mingote, S., Chuhma, N., Kusnoor, S. V., et al., “Functional connectome analysis of dopamine neuron glutamatergic connections in forebrain regions,” J. Neurosci., 35, 16,259–16,271 (2015).Google Scholar
  30. Murrough, J. W., “Ketamine for depression: An update,” Biol. Psychiatry, 80, 416–418 (2016).CrossRefGoogle Scholar
  31. Murrough, J. W., Abdallah, C. G., Anticevic, A., et al., “Reduced global functional connectivity of the medial prefrontal cortex in major depressive disorder,” Hum. Brain Mapp., 37, 3214–3223 (2016).CrossRefGoogle Scholar
  32. Ntamati, N. R. and Lüscher, C., “VTA projection neurons releasing GABA and glutamate in the dentate gyrus,” eNeuro, 3, No. 4, e0137–16.2016, 1–12 (2016).Google Scholar
  33. Qi, J., Zhang, S., Wang, H. L., et al., “A glutamatergic reward input from the dorsal raphe to ventral tegmental area dopamine neurons,” Nat. Commun., 5, 5390 (2014).CrossRefGoogle Scholar
  34. Ramirez, S., Liu, X., MacDonald, C. J., et al., “Activating positive memory engrams suppresses depression-like behaviour,” Nature, 522, 335–339 (2015).CrossRefGoogle Scholar
  35. Riga, D., Matos, M. R., Glas, A., et al., “Optogenetic dissection of medial prefrontal cortex circuitry,” Front. Syst. Neurosci., 8, 230 (2014).CrossRefGoogle Scholar
  36. Sengupta, A., Bocchio, M., Bannerman, D. M., et al., “Control of amygdala circuits by 5-HT neurons via 5-HT and glutamate cotransmission,” J. Neurosci., 37, 1785–1796 (2017).CrossRefGoogle Scholar
  37. Shishkina, G. T., Berezova, I. V., Bulygina, V. V., and Dygalo, N. N., “Resistance to the development of stress-induced behavioral despair in the forced swim test associated with elevated hippocampal Bcl-xl expression,” Behav. Brain Res., 213, 218–224 (2010).CrossRefGoogle Scholar
  38. Srejic, L. R., Wood, K. M., Zeqja, A., et al., “Modulation of serotonin dynamics in the dorsal raphe nucleus via high frequency medial prefrontal cortex stimulation,” Neurobiol. Dis., 94, 129-138 (2016).CrossRefGoogle Scholar
  39. Stuber, G. D., Hnasko, T. S., Britt, J. P., et al., “Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate,” J. Neurosci., 30, 8229–8233 (2010).CrossRefGoogle Scholar
  40. Tritsch, N. X., Ding, J. B., and Sabatini, B. L., “Dopaminergic neurons inhibit striatal output through non-canonical release of GABA,” Nature, 490, 262–266 (2012).CrossRefGoogle Scholar
  41. Tye, K. M., Mirzabekov, J. J., Warden, M. R., et al., “Dopamine neurons modulate neural encoding and expression of depression-related behaviour,” Nature, 493, 537–541 (2013).CrossRefGoogle Scholar
  42. Walsh, J. J., Friedman, A. K., Sun, H., et al., “Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway,” Nat. Neurosci., 17, 27–29 (2014).CrossRefGoogle Scholar
  43. Walsh, J. J. and Han, M. H., “The heterogeneity of ventral tegmental area neurons: Projection functions in a mood-related context,” Neuroscience, 282, 101–108 (2014).CrossRefGoogle Scholar
  44. Warden, M. R., Selimbeyoglu, A., Mirzabekov, J. J., et al., “A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge,” Nature, 492, 428–432 (2012).CrossRefGoogle Scholar
  45. Ye, X., Kapeller-Libermann, D., Travaglia, A., et al., “Direct dorsal hippocampal-prelimbic cortex connections strengthen fear memories,” Nat. Neurosci., 20, 52–61 (2017).CrossRefGoogle Scholar
  46. Yoo, J. H., Zell, V., Gutierrez-Reed, N., et al., “Ventral tegmental area glutamate neurons co-release GABA and promote positive reinforcement,” Nat. Commun., 7, 13697 (2016).CrossRefGoogle Scholar
  47. Zhou, L., Liu, M. Z., Li, Q., et al., “Organization of functional long-range circuits controlling the activity of serotonergic neurons in the dorsal raphe nucleus,” Cell Rep., 18, 3018–3032 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk National Research State UniversityNovosibirskRussia

Personalised recommendations