Optogenetics – New Potentials for Electrophysiology

  • E. P. KuleshovaEmail author

This review addresses the new potentials opened up by the development of optogenetic methods and the advantages of combining these with conventional electrophysiological approaches in experimental studies to resolve a wide range of neurophysiological tasks. This review includes descriptions of the main difficulties and nuances in studies using optogenetic methods and examples of technical solutions to provide for simultaneous optostimulation and recording of neuron activity.


optogenetics extracellular neuron recording optrodes silicon probes microdiodes wireless optostimulation and neuron recording systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abaya, T. V. F., Blair, S., Tathireddy, P., et al., “A 3D glass optrode array for optical neural stimulation,” Biomed. Opt. Express, 3, No. 12, 3087–3104 (2012).CrossRefGoogle Scholar
  2. Adamantidis, A. R., Zhang, F., Aravanis, A. M., et al., “Neural substrates of awakening probed with optogenetic control of hypocretin neurons,” Nature, 450, No. 7168, 420–424 (2007).CrossRefGoogle Scholar
  3. Adamantidis, A. R., Zhang, F., de Lecea, L., and Deisseroth, K., “Optogenetics: opsins and optical interfaces in neuroscience,” Cold Spring Harb. Protoc., No. 8, 815–822 (2014).Google Scholar
  4. Airan, R. D., Thompson, K. R., Fenno, L. E., et al., “Temporally precise in vivo control of intracellular signalling,” Nature, 458, No. 7241, 1025–1029 (2009).CrossRefGoogle Scholar
  5. Allen, B. D., Singer, A. C., and Boyden, E. S., “Principles of designing interpretable optogenetic behavior experiments,” Learn. Mem., 22, No. 4, 232–238 (2015).CrossRefGoogle Scholar
  6. Anikeeva, P., Andalman, A. S., Witten, I., et al., “Optetrode: a multichannel readout for optogenetic control in freely moving mice,” Nat. Neurosci., 15, No. 1, 163–170 (2011).CrossRefGoogle Scholar
  7. Aravanis, A. M., Wang, L.-P., Zhang, F., et al., “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng., 4, No. 3, 43–56 (2007).CrossRefGoogle Scholar
  8. Arenkiel, B. R., Peca, J., Davison, I. G., et al., “In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2,” Neuron, 54, No. 2, 205–218 (2007).CrossRefGoogle Scholar
  9. Bartic, C., Battaglia, F. P., Wang, L., et al., “A multichannel recording system with optical stimulation for closed-loop optogenetic experiments,” Methods Mol. Biol., 1408, 333–344 (2016).CrossRefGoogle Scholar
  10. Beier, K. T., Saunders, A., Oldenburg, I. A., et al., “Anterograde or retrograde transsynaptic labeling of CNS neurons with vesicular stomatitis virus vectors,” Proc. Natl. Acad. Sci. USA, 108, 37, 15414–15419 (2011).CrossRefGoogle Scholar
  11. Berndt, A. and Deisseroth, K., “Optogenetics. Expanding the optogenetics toolkit,” Science, 349, No. 6248, 590–591 (2015).CrossRefGoogle Scholar
  12. Berndt, A., Lee, S. Y., Ramakrishnan, C., and Deisseroth, K., “Structureguided transformation of channelrhodopsin into a light-activated chloride channel,” Science, 344, No. 6182, 420–424 (2014).CrossRefGoogle Scholar
  13. Boyden, E. S., “Optogenetics and the future of neuroscience,” Nat. Neurosci., 18, No. 9, 1200–1201 (2015).CrossRefGoogle Scholar
  14. Boyden, E. S., Zhang, F., Bamberg, E., et al., “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci., 8, No. 9, 1263–1268 (2005).CrossRefGoogle Scholar
  15. Buzsáki, G., Stark, E., Berényi, A., et al., “Tools for probing local circuits: high-density silicon probes combined with optogenetics,” Neuron, 86, No. 1, 92–105 (2015).CrossRefGoogle Scholar
  16. Canales, A., Jia, X., Froriep, U. P., et al., “Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo,” Nat. Biotechnol., 33, No. 3, 277–284 (2015).CrossRefGoogle Scholar
  17. Cardin, J. A., Carlén, M., Meletis, K., et al., “Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2,” Nature Protocols, 5, No. 2, 247–254 (2010).CrossRefGoogle Scholar
  18. Carpentier, D. C. J., Vevis, K., Trabalza, A., et al., “Enhanced pseudotyping efficiency of HIV-1 lentiviral vectors by a rabies/vesicular stomatitis virus chimeric envelope glycoprotein,” Gene Ther., 19, No. 7, 761–774 (2012).CrossRefGoogle Scholar
  19. Carter, M. and Shieh, J. C., Guide to Research Techniques in Neuroscience, Academic Press (2015).Google Scholar
  20. Castle, M. J., Turunen, H. T., Vandenberghe, L. H., and Wolfe, J. H., “Controlling AAV tropism in the nervous system with natural and engineered capsids,” Methods Mol. Biol., 1382, 133–149 (2016).CrossRefGoogle Scholar
  21. Chen, S., Pei, W., Gui, Q., et al., “A fiber-based implantable multi-optrode array with contiguous optical and electrical sites,” J. Neural Eng., 10, No. 4, 046020 (2013).CrossRefGoogle Scholar
  22. Cho, Y. K. and Li, D., “Optogenetics: basic concepts and their development,” Methods Mol. Biol., 1–17 (2016).Google Scholar
  23. Deisseroth, K., “Optogenetics: 10 years of microbial opsins in neuroscience,” Nat. Neurosci., 18, No. 9, 1213–1225 (2015).CrossRefGoogle Scholar
  24. Deisseroth, K., “Optogenetics: development and application,” Neurosci. Res., 65, 26 (2009).CrossRefGoogle Scholar
  25. Dolgikh, D. A., Malyshev, A. Y., Salozhin, S. V., et al., “Anion-selective channelrhodopsin expressed in neuronal cell culture and in vivo in murine brain: Light-induced inhibition of generation of action potentials,” Dokl. Biochem. Biophys., 465, 424–427 (2015).CrossRefGoogle Scholar
  26. Dufour, S. and De Koninck, Y., “Optrodes for combined optogenetics and electrophysiology in live animals,” Neurophotonics, 2, No. 3, 031205 (2015).CrossRefGoogle Scholar
  27. El-Shamayleh, Y., Ni, A. M., and Horwitz, G. D., “Strategies for targeting primate neural circuits with viral vectors,” J. Neurophysiol., 116, No. 1, 122–134 (2016).CrossRefGoogle Scholar
  28. Fan, B. and Li, W., “Miniaturized optogenetic neural implants: a review,” Lab on a Chip, 15, No. 19, 3838–3855 (2015).CrossRefGoogle Scholar
  29. Freedman, D. S., Schroeder, J. B., Telian, G. I., et al., “OptoZIF Drive: a 3D printed implant and assembly tool package for neural recording and optical stimulation in freely moving mice,” J. Neural Eng., 13, No. 6, 066013 (2016).CrossRefGoogle Scholar
  30. Galvan, A., Hu, X., Smith, Y., and Wichmann, T., “Effects of optogenetic activation of corticothalamic terminals in the motor thalamus of awake monkeys,” J. Neurosci., 36, No. 12, 3519–3530 (2016).CrossRefGoogle Scholar
  31. Glock, C., Nagpal, J., and Gottschalk, A., “Microbial rhodopsin optogenetic tools: application for analyses of synaptic transmission and of neuronal network activity in behavior,” Methods Mol. Biol., 1327, 87–103 (2015).CrossRefGoogle Scholar
  32. Govorunova, E. G. and Koppel, L. A., “The road to optogenetics: microbial rhodopsins,” Biochemistry (Mosc.), 81, No. 9, 928–940 (2016).CrossRefGoogle Scholar
  33. Govorunova, E. G., Sineshchekov, O. A., and Spudich, J. L., “Proteomonas sulcata ACR1: A fast anion channelrhodopsin,” Photochem. Photobiol., 92, No. 2, 257–263 (2016).CrossRefGoogle Scholar
  34. Govorunova, E. G., Sineshchekov, O. A., and Spudich, J. L., “Three families of rhodopsin channels and their use in optogenetics,” Zh. Vyssh. Nerv. Deyat., 67, No. 5 (2017b).Google Scholar
  35. Govorunova, E. G., Sineshchekov, O. A., Rodarte, E. M., et al., “The expanding family of natural anion channelrhodopsins reveals large variations in kinetics, conductance, and spectral sensitivity,” Sci. Rep., 7, 43358 (2017a).Google Scholar
  36. Gradinaru, V., Thompson, K. R., Zhang, F., et al., “Targeting and readout strategies for fast optical neural control in vitro and in vivo,” J. Neurosci., 27, No. 52, 14231–14238 (2007).CrossRefGoogle Scholar
  37. Grosenick, L., Marshel, J. H., and Deisseroth, K., “Closed-loop and activity-guided optogenetic control,” Neuron, 86, No. 1, 106–139 (2015).CrossRefGoogle Scholar
  38. Han, X., “In vivo application of optogenetics for neural circuit analysis,” ACS Chem. Neurosci., 3, No. 8, 577–584 (2012).CrossRefGoogle Scholar
  39. Han, X., Qian, X., Bernstein, J. G., et al., “Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain,” Neuron, 62, No. 2, 191–198 (2009).CrossRefGoogle Scholar
  40. Hanks, T. D., Kopec, C. D., Brunton, B. W., et al., “Distinct relationships of parietal and prefrontal cortices to evidence accumulation,” Nature, 520, No. 7546, 220–223 (2015).CrossRefGoogle Scholar
  41. Husson, S. J., Gottschalk, A., and Leifer, A. M., “Optogenetic manipulation of neural activity in C. elegans: From synapse to circuits and behaviour,” Biol. Cell., 105, No. 6, 235–250 (2013).CrossRefGoogle Scholar
  42. Iseri, E. and Kuzum, D., “Implantable optoelectronic probes for in vivo optogenetics,” J. Neural Eng., 14, No. 3, 031001 (2017).CrossRefGoogle Scholar
  43. Kim, T.-I., McCall, J. G., Jung, Y. H., et al., “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science, 340, No. 6129, 211–216 (2013).CrossRefGoogle Scholar
  44. Klapoetke, N. C., Murata, Y., Kim, S. S., et al., “Independent optical excitation of distinct neural populations,” Nat. Methods, 11, No. 3, 338–346 (2014).CrossRefGoogle Scholar
  45. Kühn, R. and Torres, R. M., “Cre/loxP recombination system and gene targeting,” Methods Mol. Biol., 180,175–204 (2002).Google Scholar
  46. Kwon, K. Y., Lee, H.-M., Ghovanloo, M., et al., “A wireless slanted optrode array with integrated micro leds for optogenetics,” in: 2014 IEEE27th Int. Conf. on Micro Electro Mechanical Systems (MEMS), (2014).
  47. Liang, L., Oline, S. N., Kirk, J. C., et al., “Scalable, lightweight, integrated and quick-to-assemble (SLIQ) hyperdrives for functional circuit dissection,” Front. Neural Circ., 11, 8 (2017).Google Scholar
  48. Lin, S.-T., Wolfe, J. C., Dani, J. A., and Shih, W.-C., “Flexible optitrode for localized light delivery and electrical recording,” Optics Lett., 37, No. 11, 1781–1783 (2012).CrossRefGoogle Scholar
  49. Lu, Y., Truccolo, W., Wagner, F. B., Vargas-Irwin, C. E., et al., “Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex,” J. Neurophysiol., 113, No. 10, 3574–3587 (2015).CrossRefGoogle Scholar
  50. Madisen, L., Mao, T., Koch, H., et al., “A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing,” Nat. Neurosci., 15, No. 5, 793–802 (2012).CrossRefGoogle Scholar
  51. Malyshev, A. Y., Roshchin, M. V., Smirnova, G. R., et al., “Chloride conducting light activated channel GtACR2 can produce both cessation of firing and generation of action potentials in cortical neurons in response to light,” Neurosci. Lett., 640, 76–80 (2017).CrossRefGoogle Scholar
  52. Masamizu, Y., Okada, T., Kawasaki, K., et al., “Local and retrograde gene transfer into primate neuronal pathways via adeno-associated virus serotype 8 and 9,” Neuroscience, 193, 249–258 (2011).CrossRefGoogle Scholar
  53. McAlinden, N., Massoubre, D., Richardson, E., et al., “Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation,” Optics Lett., 38, No. 6, 992–994 (2013).CrossRefGoogle Scholar
  54. Mohammad, F., Stewart, J. C., Ott, S., et al., “Optogenetic inhibition of behavior with anion channelrhodopsins,” Nat. Methods, 14, No. 3, 271-274 (2017).CrossRefGoogle Scholar
  55. Nagel, G., Brauner, M., Liewald, J. F., et al., “Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses,” Curr. Biol., CB 15, No. 24, 2279–2284 (2005).Google Scholar
  56. Oh, Y.-M., Karube, F., Takahashi, S., et al., “Using a novel PV-Cre rat model to characterize pallidonigral cells and their terminations,” Brain Struct. Funct., (2016).
  57. Park, S., Guo, Y., Jia, X., et al., “One-step optogenetics with multifunctional flexible polymer fibers,” Nat. Neurosci., 20, No. 4, 612–619 (2017).CrossRefGoogle Scholar
  58. Pisanello, F., Sileo, L., and De Vittorio, M., “Micro- and nanotechnologies for optical neural interfaces,” Front. Neurosci., 10, 70 (2016).Google Scholar
  59. Pisanello, F., Sileo, L., Oldenburg, I. A., et al., “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron, 82, No. 6, 1245–1254 (2014).CrossRefGoogle Scholar
  60. Royer, S., Zemelman, B. V., Barbic, M., et al., “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal,” Eur. J. Neurosci., 31, No. 12, 2279–2291 (2010).CrossRefGoogle Scholar
  61. Sakmar, T. P., “Structure of rhodopsin and the superfamily of seven-helical receptors: the same and not the same,” Curr. Opin. Cell Biol., 14, No. 2, 189–195 (2002).CrossRefGoogle Scholar
  62. Saunders, A., Johnson, C. A., and Sabatini, B. L., “Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons,” Front. Neural Circ., 6, 47 (2012).Google Scholar
  63. Schwaerzle, M., Paul, O., and Ruther, P., “Compact silicon-based optrode with integrated laser diode chips, SU-8 waveguides and platinum electrodes for optogenetic applications,” J. Micromech. Microeng. Str. Develop. Syst., 27, No. 6, 065004 (2017).CrossRefGoogle Scholar
  64. Shichida, Y. and Yamashita, T., “Diversity of visual pigments from the viewpoint of G protein activation - comparison with other G protein-coupled receptors,” Photochem. Photobiol. Sci., 2, No. 12, 1237–1246 (2003).CrossRefGoogle Scholar
  65. Shin, Y., Yoo, M., Kim, H.-S., et al., “Characterization of fiber-optic light delivery and light-induced temperature changes in a rodent brain for precise optogenetic neuromodulation,” Biomed. Opt. Express, 7, No. 11, 4450–4471 (2016).CrossRefGoogle Scholar
  66. Sizemore, R. J., Seeger-Armbruster, S., Hughes, S. M., and Parr-Brownlie, L. C., “Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology,” J. Neurophysiol., 115, No. 4, 2124–2146 (2016).CrossRefGoogle Scholar
  67. Stark, E., Koos, T., and Buzsáki, G., “Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals,” J. Neurophysiol., 108, No. 1, 349–363 (2012).CrossRefGoogle Scholar
  68. Tervo, D. G. R., Hwang, B.-Y., Viswanathan, S., et al., “A designer AAV variant permits efficient retrograde access to projection neurons,” Neuron, 92, No. 2, 372–382 (2016).CrossRefGoogle Scholar
  69. Voigts, J., Siegle, J. H., Pritchett, D. L., and Moore, C. I., “The flexDrive: an ultra-light implant for optical control and highly parallel chronic recording of neuronal ensembles in freely moving mice,” Front. Syst. Neurosci., 7, 8 (2013).Google Scholar
  70. Wang, H., Peca, J., Matsuzaki, M., et al., “High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice,” Proc. Natl. Acad. Sci. USA, 104, No. 19, 8143–8148 (2007).CrossRefGoogle Scholar
  71. Wang, J., Wagner, F, Borton, D. A., et al., “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng., 9, No. 1, 016001 (2012).CrossRefGoogle Scholar
  72. Warden, M. R., Cardin, J. A., and Deisseroth, K., “Optical neural interfaces,” Ann. Rev. Biomed. Eng., 16, 103–129 (2014).CrossRefGoogle Scholar
  73. Wietek, J., Beltramo, R., Scanziani, M., et al., “An improved chloride-conducting channelrhodopsin for light-induced inhibition of neuronal activity in vivo,” Sci. Rep., 5, 14807 (2015).CrossRefGoogle Scholar
  74. Wietek, J., Broser, M., Krause, B. S., and Hegemann, P., “Identification of a natural green light absorbing chloride conducting channelrhodopsin from Proteomonas sulcata,” J. Biol. Chem., 291, No. 8, 4121 – 4127 (2016).CrossRefGoogle Scholar
  75. Wietek, J., Wiegert, J. S., Adeishvili, N., et al., “Conversion of channelrhodopsin into a light-gated chloride channel,” Science, 344, No. 6182, 409–412 (2014).CrossRefGoogle Scholar
  76. Witten, I. B., Steinberg, E. E., Lee, S. Y., et al., “Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement,” Neuron, 72, No. 5, 721–733 (2011).CrossRefGoogle Scholar
  77. Wu, F., Stark, E., Im, M., et al., “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng., 10, No. 5, 056012 (2013).CrossRefGoogle Scholar
  78. Yizhar, O., Fenno, L. E., Davidson, T. J., et al., “Optogenetics in neural systems,” Neuron, 71, No. 1, 9–34 (2011a).CrossRefGoogle Scholar
  79. Yizhar, O., Fenno, L., Zhang, F., et al., “Microbial opsins: a family of single-component tools for optical control of neural activity,” Cold Spring Harb. Protoc., No. 3, top102 (2011b).Google Scholar
  80. Zemelman, B. V., Lee, G. A., Ng, M., and Miesenböck, G., “Selective Photostimulation of Genetically ChARGed Neurons,” Neuron, 33, No. 1, 15–22 (2002).CrossRefGoogle Scholar
  81. Zemelman, B. V., Nesnas, N., Lee, G. A., and Miesenbock, G., “Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons,” Proc. Natl. Acad. Sci. USA, 100, No. 3, 1352–1357 (2003).CrossRefGoogle Scholar
  82. Zeng, H. and Madisen, L., “Mouse transgenic approaches in optogenetics,” Progr. Brain Res., 192, 193–213 (2012).CrossRefGoogle Scholar
  83. Zhang, F., Vierock, J., Yizhar, O., et al., “The microbial opsin family of optogenetic tools,” Cell, 147, No. 7, 1446–1457 (2011).CrossRefGoogle Scholar
  84. Zhang, J., Laiwalla, F., Kim, J. A., et al., “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng., 6, No. 5, 055007 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations